Dipayan Pal, Naeun Yang, Harsono Simka, Jit Dutta, Kesong Wang, Jing Mu, Ping-Che Lee, Xinyu Wang, Charles H Winter, Andrew C Kummel
{"title":"Vapor-Deposited MOF for Low-k Dielectric Seamless High-Aspect-Ratio Interconnect Gap Fill.","authors":"Dipayan Pal, Naeun Yang, Harsono Simka, Jit Dutta, Kesong Wang, Jing Mu, Ping-Che Lee, Xinyu Wang, Charles H Winter, Andrew C Kummel","doi":"10.1021/acsami.4c20795","DOIUrl":null,"url":null,"abstract":"<p><p>A vapor-phase ZIF-8 MOF deposition procedure for seamless high-aspect-ratio interconnect gap fill has been developed with a short process time (15 min) at a 160 °C process temperature. This is the most rapid documented vapor technique to produce a MOF film and is made possible by a higher process temperature and a low background H<sub>2</sub>O environment. The process consists of ALD of a thin (<5 nm) ZnO film followed by conversion to ZIF-8 in an organic linker (ALD + soak cycle). This method exhibited complete ZnO to MOF conversion, as well as MOFs with low-k (<i>k</i> ∼ 2.6). Dielectric gap fill was investigated utilizing patterned samples with widths ranging from 40 to 400 nm. Both high aspect ratio gap fill and multiple aspect ratio gap fills were shown with no residual ZnO. The MOF gap-fill process could be attributed to the reflow behavior of 2-methylimidazole-ZnO reaction intermediates or nascent product. The MOF was found to be stable at 400 °C under vacuum (1 × 10<sup>-2</sup> Torr), which is comparable to other low-k dielectrics. Fluorine plasma etch resistance was tested for the ZIF-8 MOF in comparison to bare Si, SiCOH, and SiO<sub>2</sub>; the MOF was proven to be the best in resisting plasma etch. This work demonstrated that ALD + soak cycle conversion low-k ZIF-8 MOF films have the potential to be a plasma-free vapor-phase seamless gap fill for high aspect ratio features to be employed in logic and memory device fabrication, as well as three-dimensional heterogeneous integration (3DHI).</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"14682-14691"},"PeriodicalIF":8.3000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c20795","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A vapor-phase ZIF-8 MOF deposition procedure for seamless high-aspect-ratio interconnect gap fill has been developed with a short process time (15 min) at a 160 °C process temperature. This is the most rapid documented vapor technique to produce a MOF film and is made possible by a higher process temperature and a low background H2O environment. The process consists of ALD of a thin (<5 nm) ZnO film followed by conversion to ZIF-8 in an organic linker (ALD + soak cycle). This method exhibited complete ZnO to MOF conversion, as well as MOFs with low-k (k ∼ 2.6). Dielectric gap fill was investigated utilizing patterned samples with widths ranging from 40 to 400 nm. Both high aspect ratio gap fill and multiple aspect ratio gap fills were shown with no residual ZnO. The MOF gap-fill process could be attributed to the reflow behavior of 2-methylimidazole-ZnO reaction intermediates or nascent product. The MOF was found to be stable at 400 °C under vacuum (1 × 10-2 Torr), which is comparable to other low-k dielectrics. Fluorine plasma etch resistance was tested for the ZIF-8 MOF in comparison to bare Si, SiCOH, and SiO2; the MOF was proven to be the best in resisting plasma etch. This work demonstrated that ALD + soak cycle conversion low-k ZIF-8 MOF films have the potential to be a plasma-free vapor-phase seamless gap fill for high aspect ratio features to be employed in logic and memory device fabrication, as well as three-dimensional heterogeneous integration (3DHI).
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.