Effects of acute bisphenol a exposure on feeding and reproduction in sea urchin (Heliocidaris crassispina).

IF 3.9 3区 环境科学与生态学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Comparative Biochemistry and Physiology C-toxicology & Pharmacology Pub Date : 2025-02-22 DOI:10.1016/j.cbpc.2025.110163
Xiuwen Xu, Keying Ding, Xiuqi Jin, Jinyue Jia, Kaiwen Ding, Weiye Li, Jixiu Wang, Jingwen Yang, Bayden D Russell, Tianming Wang
{"title":"Effects of acute bisphenol a exposure on feeding and reproduction in sea urchin (Heliocidaris crassispina).","authors":"Xiuwen Xu, Keying Ding, Xiuqi Jin, Jinyue Jia, Kaiwen Ding, Weiye Li, Jixiu Wang, Jingwen Yang, Bayden D Russell, Tianming Wang","doi":"10.1016/j.cbpc.2025.110163","DOIUrl":null,"url":null,"abstract":"<p><p>Bisphenol A (BPA), an endocrine-disrupting chemical that is used globally in the production of many plastics, is a pervasive environmental contaminant that poses a growing threat to various forms of life. However, data on its impact on invertebrates, particularly echinoderms, remain scarce, and there is no existing research on BPA's toxicity in adult sea urchins. This study investigates the impact of acute BPA exposure (100, 600, and 1500 μg/L for one week) in adult sea urchin Heliocidaris crassispina, focusing on feeding behavior (including predation and anti-predation behaviors, digestive enzyme activity), reproductive physiology (including gonadal characteristics, sex hormone levels, and expression of reproduction-related genes), and transgenerational effects. Results show that BPA exposure significantly reduces feeding capacity, prolongs response times in behavioral assays, and decreases digestive enzyme activity, indicating impaired energy acquisition. Histological analysis reveals gonadal developmental delays. Biochemical analysis revealed significant alterations in sex hormone levels, with a severe imbalance in their ratios. Gene expression analysis indicates significant changes in reproductive-related genes (up-regulation of reproductive-related gene myp, down-regulation of sex hormone synthesis key gene cyp17), supporting endocrine disruption. Furthermore, BPA exposure leads to developmental delays in offspring, highlighting potential transgenerational risks. Notably, a non-monotonic dose response was observed across several physiological and molecular endpoints, consistent with those seen in other species. These findings provide new insights into BPA toxicity in marine invertebrates, emphasizing its threat to sea urchin populations and coastal ecosystem stability.</p>","PeriodicalId":10602,"journal":{"name":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","volume":" ","pages":"110163"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.cbpc.2025.110163","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bisphenol A (BPA), an endocrine-disrupting chemical that is used globally in the production of many plastics, is a pervasive environmental contaminant that poses a growing threat to various forms of life. However, data on its impact on invertebrates, particularly echinoderms, remain scarce, and there is no existing research on BPA's toxicity in adult sea urchins. This study investigates the impact of acute BPA exposure (100, 600, and 1500 μg/L for one week) in adult sea urchin Heliocidaris crassispina, focusing on feeding behavior (including predation and anti-predation behaviors, digestive enzyme activity), reproductive physiology (including gonadal characteristics, sex hormone levels, and expression of reproduction-related genes), and transgenerational effects. Results show that BPA exposure significantly reduces feeding capacity, prolongs response times in behavioral assays, and decreases digestive enzyme activity, indicating impaired energy acquisition. Histological analysis reveals gonadal developmental delays. Biochemical analysis revealed significant alterations in sex hormone levels, with a severe imbalance in their ratios. Gene expression analysis indicates significant changes in reproductive-related genes (up-regulation of reproductive-related gene myp, down-regulation of sex hormone synthesis key gene cyp17), supporting endocrine disruption. Furthermore, BPA exposure leads to developmental delays in offspring, highlighting potential transgenerational risks. Notably, a non-monotonic dose response was observed across several physiological and molecular endpoints, consistent with those seen in other species. These findings provide new insights into BPA toxicity in marine invertebrates, emphasizing its threat to sea urchin populations and coastal ecosystem stability.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.50
自引率
5.10%
发文量
206
审稿时长
30 days
期刊介绍: Part C: Toxicology and Pharmacology. This journal is concerned with chemical and drug action at different levels of organization, biotransformation of xenobiotics, mechanisms of toxicity, including reactive oxygen species and carcinogenesis, endocrine disruptors, natural products chemistry, and signal transduction with a molecular approach to these fields.
期刊最新文献
Editorial Board Effects of acute bisphenol a exposure on feeding and reproduction in sea urchin (Heliocidaris crassispina). Neurotoxic effects of chronic exposure to perfluorobutane sulfonate in adult zebrafish (Danio Rerio). The role of NADPH oxidase in the mud crab (Scylla paramamosain) in response to Vibrio parahaemolyticus infection. Combined heavy metals (As and Pb) affects antioxidant status and lipid metabolism in zebrafish (Danio rerio)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1