Neurogenesis and glial impairments in congenital hydrocephalus: insights from a BioGlue-induced fetal lamb model.

IF 5.9 1区 医学 Q1 NEUROSCIENCES Fluids and Barriers of the CNS Pub Date : 2025-02-24 DOI:10.1186/s12987-025-00630-3
Dicle Karakaya, Kristin Lampe, Jose L Encinas, Soner Duru, Lucas Peiro, Halil Kamil Oge, Francisco M Sanchez-Margallo, Marc Oria, Jose L Peiro
{"title":"Neurogenesis and glial impairments in congenital hydrocephalus: insights from a BioGlue-induced fetal lamb model.","authors":"Dicle Karakaya, Kristin Lampe, Jose L Encinas, Soner Duru, Lucas Peiro, Halil Kamil Oge, Francisco M Sanchez-Margallo, Marc Oria, Jose L Peiro","doi":"10.1186/s12987-025-00630-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Congenital hydrocephalus (HCP) is a prevalent condition, that leads to fetal cerebral ventricle dilation and increased intracranial pressure. It is associated with significant neurological impairments, partly due to the disruption of neurogenesis and gliogenesis. This study aims to investigate alterations in the proliferation and differentiation of neural progenitor cells (NPCs) in a fetal lamb model of obstructive HCP induced by intracisternal BioGlue injection, to identify the potential optimal intervention time for prenatal surgery.</p><p><strong>Methods: </strong>This study involved 22 fetal lambs, divided into control (n = 10) and HCP (n = 12) groups with hydrocephalus induced at approximately 85-90 gestational days. Histological and molecular techniques, including hematoxylin and eosin staining, triple immunofluorescence, Western blot analysis, and RT-qPCR, were utilized to assess changes in NPCs, astrocytes, and oligodendrocytes across three different gestational stages (E105, E125, and E140). The analysis of data was done by using multiple (unpaired) two-sample t-test and was represented as mean and standard deviation.</p><p><strong>Results: </strong>HCP led to significant disruptions in the ventricular zone (VZ), with the translocation of NPCs into the intraventricular CSF and formation of periventricular heterotopias. This study revealed an initial surge in the expression of NPC markers (Pax6 and Sox2), which decreased as HCP progressed. Astroglia reaction intensified, as indicated by increased expression of GFAP, vimentin, and aquaporin 4, particularly at later stages of pregnancy (p < 0.001, p < 0.001 and p < 0.001, control and HCP E140, respectively). Myelin formation was also adversely affected, with reduced expression of oligodendrocyte markers (Olig2 and Sox10, p = 0.01 and p = 0.009, control and HCP E140, respectively) and myelin proteins (MOBP, MOG and MBP, p = 0.02, p = 0.049 and p = 0.02 control and HCP E140, respectively).</p><p><strong>Conclusions: </strong>This study contributed to clarify the profound impact of congenital HCP on neurogenesis and gliogenesis in an experimental fetal lamb model. The VZ disruption and altered expression of key neurogenic and glial markers suggested a significant pathological process underlying neurodevelopmental abnormalities. The findings suggested a potential window for prenatal surgical intervention between E105 and E125 in the sheep model, offering new avenues for prenatal therapeutic approaches and improving surgical outcomes in affected fetuses and neonates.</p>","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"22 1","pages":"20"},"PeriodicalIF":5.9000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11849300/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluids and Barriers of the CNS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12987-025-00630-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Congenital hydrocephalus (HCP) is a prevalent condition, that leads to fetal cerebral ventricle dilation and increased intracranial pressure. It is associated with significant neurological impairments, partly due to the disruption of neurogenesis and gliogenesis. This study aims to investigate alterations in the proliferation and differentiation of neural progenitor cells (NPCs) in a fetal lamb model of obstructive HCP induced by intracisternal BioGlue injection, to identify the potential optimal intervention time for prenatal surgery.

Methods: This study involved 22 fetal lambs, divided into control (n = 10) and HCP (n = 12) groups with hydrocephalus induced at approximately 85-90 gestational days. Histological and molecular techniques, including hematoxylin and eosin staining, triple immunofluorescence, Western blot analysis, and RT-qPCR, were utilized to assess changes in NPCs, astrocytes, and oligodendrocytes across three different gestational stages (E105, E125, and E140). The analysis of data was done by using multiple (unpaired) two-sample t-test and was represented as mean and standard deviation.

Results: HCP led to significant disruptions in the ventricular zone (VZ), with the translocation of NPCs into the intraventricular CSF and formation of periventricular heterotopias. This study revealed an initial surge in the expression of NPC markers (Pax6 and Sox2), which decreased as HCP progressed. Astroglia reaction intensified, as indicated by increased expression of GFAP, vimentin, and aquaporin 4, particularly at later stages of pregnancy (p < 0.001, p < 0.001 and p < 0.001, control and HCP E140, respectively). Myelin formation was also adversely affected, with reduced expression of oligodendrocyte markers (Olig2 and Sox10, p = 0.01 and p = 0.009, control and HCP E140, respectively) and myelin proteins (MOBP, MOG and MBP, p = 0.02, p = 0.049 and p = 0.02 control and HCP E140, respectively).

Conclusions: This study contributed to clarify the profound impact of congenital HCP on neurogenesis and gliogenesis in an experimental fetal lamb model. The VZ disruption and altered expression of key neurogenic and glial markers suggested a significant pathological process underlying neurodevelopmental abnormalities. The findings suggested a potential window for prenatal surgical intervention between E105 and E125 in the sheep model, offering new avenues for prenatal therapeutic approaches and improving surgical outcomes in affected fetuses and neonates.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Fluids and Barriers of the CNS
Fluids and Barriers of the CNS Neuroscience-Developmental Neuroscience
CiteScore
10.70
自引率
8.20%
发文量
94
审稿时长
14 weeks
期刊介绍: "Fluids and Barriers of the CNS" is a scholarly open access journal that specializes in the intricate world of the central nervous system's fluids and barriers, which are pivotal for the health and well-being of the human body. This journal is a peer-reviewed platform that welcomes research manuscripts exploring the full spectrum of CNS fluids and barriers, with a particular focus on their roles in both health and disease. At the heart of this journal's interest is the cerebrospinal fluid (CSF), a vital fluid that circulates within the brain and spinal cord, playing a multifaceted role in the normal functioning of the brain and in various neurological conditions. The journal delves into the composition, circulation, and absorption of CSF, as well as its relationship with the parenchymal interstitial fluid and the neurovascular unit at the blood-brain barrier (BBB).
期刊最新文献
Applying machine learning to high-dimensional proteomics datasets for the identification of Alzheimer's disease biomarkers. Research priorities for non-invasive therapies to improve hydrocephalus outcomes. Ependymal cilia decline and AQP4 upregulation in young adult rats with syringomyelia. Hippocampal vascularization pattern and cerebral blood flow cooperatively modulate hippocampal tolerable amount of Aβ deposition in the occurrence of MCI. Neurogenesis and glial impairments in congenital hydrocephalus: insights from a BioGlue-induced fetal lamb model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1