Effects of Missing Data on Heart Rate Variability Measured From A Smartwatch: Exploratory Observational Study.

IF 2 Q3 HEALTH CARE SCIENCES & SERVICES JMIR Formative Research Pub Date : 2025-02-24 DOI:10.2196/53645
Hope Davis-Wilson, Meghan Hegarty-Craver, Pooja Gaur, Matthew Boyce, Jonathan R Holt, Edward Preble, Randall Eckhoff, Lei Li, Howard Walls, David Dausch, Dorota Temple
{"title":"Effects of Missing Data on Heart Rate Variability Measured From A Smartwatch: Exploratory Observational Study.","authors":"Hope Davis-Wilson, Meghan Hegarty-Craver, Pooja Gaur, Matthew Boyce, Jonathan R Holt, Edward Preble, Randall Eckhoff, Lei Li, Howard Walls, David Dausch, Dorota Temple","doi":"10.2196/53645","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Measuring heart rate variability (HRV) through wearable photoplethysmography sensors from smartwatches is gaining popularity for monitoring many health conditions. However, missing data caused by insufficient wear compliance or signal quality can degrade the performance of health metrics or algorithm calculations. Research is needed on how to best account for missing data and to assess the accuracy of metrics derived from photoplethysmography sensors.</p><p><strong>Objective: </strong>This study aimed to evaluate the influence of missing data on HRV metrics collected from smartwatches both at rest and during activity in real-world settings and to evaluate HRV agreement and consistency between wearable photoplethysmography and gold-standard wearable electrocardiogram (ECG) sensors in real-world settings.</p><p><strong>Methods: </strong>Healthy participants were outfitted with a smartwatch with a photoplethysmography sensor that collected high-resolution interbeat interval (IBI) data to wear continuously (day and night) for up to 6 months. New datasets were created with various amounts of missing data and then compared with the original (reference) datasets. 5-minute windows of each HRV metric (median IBI, SD of IBI values [STDRR], root-mean-square of the difference in successive IBI values [RMSDRR], low-frequency [LF] power, high-frequency [HF] power, and the ratio of LF to HF power [LF/HF]) were compared between the reference and the missing datasets (10%, 20%, 35%, and 60% missing data). HRV metrics calculated from the photoplethysmography sensor were compared with HRV metrics calculated from a chest-worn ECG sensor.</p><p><strong>Results: </strong>At rest, median IBI remained stable until at least 60% of data degradation (P=.24), STDRR remained stable until at least 35% of data degradation (P=.02), and RMSDRR remained stable until at least 35% data degradation (P=.001). During the activity, STDRR remained stable until 20% data degradation (P=.02) while median IBI (P=.01) and RMSDRR P<.001) were unstable at 10% data degradation. LF (rest: P<.001; activity: P<.001), HF (rest: P<.001, activity: P<.001), and LF/HF (rest: P<.001, activity: P<.001) were unstable at 10% data degradation during rest and activity. Median IBI values calculated from photoplethysmography sensors had a moderate agreement (intraclass correlation coefficient [ICC]=0.585) and consistency (ICC=0.589) and LF had moderate consistency (ICC=0.545) with ECG sensors. Other HRV metrics demonstrated poor agreement (ICC=0.071-0.472).</p><p><strong>Conclusions: </strong>This study describes a methodology for the extraction of HRV metrics from photoplethysmography sensor data that resulted in stable and valid metrics while using the least amount of available data. While smartwatches containing photoplethysmography sensors are valuable for remote monitoring of patients, future work is needed to identify best practices for using these sensors to evaluate HRV in medical settings.</p>","PeriodicalId":14841,"journal":{"name":"JMIR Formative Research","volume":"9 ","pages":"e53645"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Formative Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/53645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Measuring heart rate variability (HRV) through wearable photoplethysmography sensors from smartwatches is gaining popularity for monitoring many health conditions. However, missing data caused by insufficient wear compliance or signal quality can degrade the performance of health metrics or algorithm calculations. Research is needed on how to best account for missing data and to assess the accuracy of metrics derived from photoplethysmography sensors.

Objective: This study aimed to evaluate the influence of missing data on HRV metrics collected from smartwatches both at rest and during activity in real-world settings and to evaluate HRV agreement and consistency between wearable photoplethysmography and gold-standard wearable electrocardiogram (ECG) sensors in real-world settings.

Methods: Healthy participants were outfitted with a smartwatch with a photoplethysmography sensor that collected high-resolution interbeat interval (IBI) data to wear continuously (day and night) for up to 6 months. New datasets were created with various amounts of missing data and then compared with the original (reference) datasets. 5-minute windows of each HRV metric (median IBI, SD of IBI values [STDRR], root-mean-square of the difference in successive IBI values [RMSDRR], low-frequency [LF] power, high-frequency [HF] power, and the ratio of LF to HF power [LF/HF]) were compared between the reference and the missing datasets (10%, 20%, 35%, and 60% missing data). HRV metrics calculated from the photoplethysmography sensor were compared with HRV metrics calculated from a chest-worn ECG sensor.

Results: At rest, median IBI remained stable until at least 60% of data degradation (P=.24), STDRR remained stable until at least 35% of data degradation (P=.02), and RMSDRR remained stable until at least 35% data degradation (P=.001). During the activity, STDRR remained stable until 20% data degradation (P=.02) while median IBI (P=.01) and RMSDRR P<.001) were unstable at 10% data degradation. LF (rest: P<.001; activity: P<.001), HF (rest: P<.001, activity: P<.001), and LF/HF (rest: P<.001, activity: P<.001) were unstable at 10% data degradation during rest and activity. Median IBI values calculated from photoplethysmography sensors had a moderate agreement (intraclass correlation coefficient [ICC]=0.585) and consistency (ICC=0.589) and LF had moderate consistency (ICC=0.545) with ECG sensors. Other HRV metrics demonstrated poor agreement (ICC=0.071-0.472).

Conclusions: This study describes a methodology for the extraction of HRV metrics from photoplethysmography sensor data that resulted in stable and valid metrics while using the least amount of available data. While smartwatches containing photoplethysmography sensors are valuable for remote monitoring of patients, future work is needed to identify best practices for using these sensors to evaluate HRV in medical settings.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
JMIR Formative Research
JMIR Formative Research Medicine-Medicine (miscellaneous)
CiteScore
2.70
自引率
9.10%
发文量
579
审稿时长
12 weeks
期刊最新文献
A Classroom-Based Intervention for Reducing Sedentary Behavior and Improving Spinal Health: Pragmatic Stepped-Wedge Feasibility Randomized Controlled Trial. Development and Implementation of MyPainHub, a Web-Based Resource for People With Musculoskeletal Conditions and Their Health Care Professionals: Mixed Methods Study. Effects of Missing Data on Heart Rate Variability Measured From A Smartwatch: Exploratory Observational Study. Evaluation of Financial Support Workshops for Patients Under State Pension Age With Degenerative Cervical Myelopathy: Survey Study. Improving the User Interface and Guiding the Development of Effective Training Material for a Clinical Research Recruitment and Retention Dashboard: Usability Testing Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1