Broussonetia papyrifera Pollen Metabolome Insights, Allergenicity, and Dispersal in Response to Climate Change Variables.

IF 3.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Metabolites Pub Date : 2025-02-18 DOI:10.3390/metabo15020137
Muhammad Humayun, Saadia Naseem, Richard E Goodman, Zahid Ali
{"title":"<i>Broussonetia papyrifera</i> Pollen Metabolome Insights, Allergenicity, and Dispersal in Response to Climate Change Variables.","authors":"Muhammad Humayun, Saadia Naseem, Richard E Goodman, Zahid Ali","doi":"10.3390/metabo15020137","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives</b>: <i>Broussonetia papyrifera</i> is a tree-producing allergenic pollen that grows in varied climatic conditions worldwide and causes pollen allergies in susceptible humans. This study aimed to investigate <i>B. papyrifera</i> pollen morphology, pollen metabolome, pollen allergenicity, and climate change's impact on the plant habitat suitability in the future. <b>Methods</b>: Tree pollen was collected in spring from different regions of Pakistan. Pollen samples were subjected to morphological analysis, Fourier transform infrared spectroscopy (FTIR), liquid chromatography-mass spectrometry (LC-MS/MS), and immunoblotting. <b>Results</b>: MaxEnt modeling predicted the tree's future-growth invasion into new regions. Scanning electron microscopy (SEM) and FTIR displayed regional differences in pollen morphology and metabolome correlated to shifts in climatic variables. LC-MS/MS analysis detected four lipids that can potentially stimulate inflammatory responses. Pollen protein immunoblotting studies identified a putative 15 kDa novel allergen and verified previously known 40 kDa, 33 kDa, and 10 kDa allergens. <i>B. papyrifera</i> MaxEnt modeling through ACCESS1.0 and CCSM4 under 2-greenhouse gas emissions scenarios {representative concentration pathway (RCP) 4.5 and 8.5} projected the tree invasion by the years 2050 and 2070. <b>Conclusions</b>: The study findings demonstrate that differences in climatic variables affect <i>B. papyrifera</i>-pollen metabolome and predict the habitat suitability of the tree for invasion in the future. The study results provide a model system for studying other species' pollen morphology, metabolome, future habitat suitability for plant invasion, and associated allergies in response to climate change.</p>","PeriodicalId":18496,"journal":{"name":"Metabolites","volume":"15 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolites","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/metabo15020137","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background/Objectives: Broussonetia papyrifera is a tree-producing allergenic pollen that grows in varied climatic conditions worldwide and causes pollen allergies in susceptible humans. This study aimed to investigate B. papyrifera pollen morphology, pollen metabolome, pollen allergenicity, and climate change's impact on the plant habitat suitability in the future. Methods: Tree pollen was collected in spring from different regions of Pakistan. Pollen samples were subjected to morphological analysis, Fourier transform infrared spectroscopy (FTIR), liquid chromatography-mass spectrometry (LC-MS/MS), and immunoblotting. Results: MaxEnt modeling predicted the tree's future-growth invasion into new regions. Scanning electron microscopy (SEM) and FTIR displayed regional differences in pollen morphology and metabolome correlated to shifts in climatic variables. LC-MS/MS analysis detected four lipids that can potentially stimulate inflammatory responses. Pollen protein immunoblotting studies identified a putative 15 kDa novel allergen and verified previously known 40 kDa, 33 kDa, and 10 kDa allergens. B. papyrifera MaxEnt modeling through ACCESS1.0 and CCSM4 under 2-greenhouse gas emissions scenarios {representative concentration pathway (RCP) 4.5 and 8.5} projected the tree invasion by the years 2050 and 2070. Conclusions: The study findings demonstrate that differences in climatic variables affect B. papyrifera-pollen metabolome and predict the habitat suitability of the tree for invasion in the future. The study results provide a model system for studying other species' pollen morphology, metabolome, future habitat suitability for plant invasion, and associated allergies in response to climate change.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Metabolites
Metabolites Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
5.70
自引率
7.30%
发文量
1070
审稿时长
17.17 days
期刊介绍: Metabolites (ISSN 2218-1989) is an international, peer-reviewed open access journal of metabolism and metabolomics. Metabolites publishes original research articles and review articles in all molecular aspects of metabolism relevant to the fields of metabolomics, metabolic biochemistry, computational and systems biology, biotechnology and medicine, with a particular focus on the biological roles of metabolites and small molecule biomarkers. Metabolites encourages scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Sufficient experimental details must be provided to enable the results to be accurately reproduced. Electronic material representing additional figures, materials and methods explanation, or supporting results and evidence can be submitted with the main manuscript as supplementary material.
期刊最新文献
From Microbes to Metabolites: Advances in Gut Microbiome Research in Type 1 Diabetes. Green Tea with Rhubarb Root Reduces Plasma Lipids While Preserving Gut Microbial Stability in a Healthy Human Cohort. Matrix Linear Models for Connecting Metabolite Composition to Individual Characteristics. Broussonetia papyrifera Pollen Metabolome Insights, Allergenicity, and Dispersal in Response to Climate Change Variables. The Adaptation of MCF-7 Breast Cancer Spheroids to the Chemotherapeutic Doxorubicin: The Dynamic Role of Phase I Drug Metabolizing Enzymes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1