Enhancing the precision of impedance measurement from 5 kHz to 1 MHz through self-identification of parasitic parameters.

IF 2.3 4区 医学 Q3 BIOPHYSICS Physiological measurement Pub Date : 2025-02-24 DOI:10.1088/1361-6579/adb9b4
Yi She, Zeyi Jiang, Qin Liu, Sirui Qiao, Yixin Ma
{"title":"Enhancing the precision of impedance measurement from 5 kHz to 1 MHz through self-identification of parasitic parameters.","authors":"Yi She, Zeyi Jiang, Qin Liu, Sirui Qiao, Yixin Ma","doi":"10.1088/1361-6579/adb9b4","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Electrical impedance tomography (EIT) generates cross-sectional images through non-invasive impedance measurements from surface electrodes. While impedance above 200 kHz can reveal intracellular properties, most existing EIT images are published at frequencies below 200 kHz. When frequencies exceed 200 kHz, the accuracy of impedance measurements declines due to the influence of distributed circuit parameters such as parasitic capacitance, on-resistance of switch and the series inductance, with a more significant impact on larger impedance. To overcome this limitation, this paper proposes an approach for precision impedance measurement through self-identification of distributed parameter.</p><p><strong>Approach: </strong>Firstly, the distributed circuit parameters are identified via correction measurements of precision resistances in the frequency range from 5 kHz to 1 MHz; then, the circuit is accurately modeled; finally, transfer impedance measurements during imaging process are corrected using the established circuit model.</p><p><strong>Main results: </strong>The distributed circuit parameter self-identification method was verified through a goodness-of-fit test, confirming the consistency between the model's predicted values and the actual values of the component. The test results indicate that at 1 MHz, the relative residuals follow a right-skewed distribution with an average value of 0.08%, which demonstrates high model accuracy. At 1 MHz, the measurement relative error after correction for the 499 Ω precision resistor is reduced by 12.01%, and for the 56 pF precision capacitor, the relative error after correction is 0.46%.</p><p><strong>Significance: </strong>The proposed method can extend the frequency range of EIT and other impedance technologies from below 200 kHz to up to 1 MHz, while ensuring good measurement accuracy.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological measurement","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6579/adb9b4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Electrical impedance tomography (EIT) generates cross-sectional images through non-invasive impedance measurements from surface electrodes. While impedance above 200 kHz can reveal intracellular properties, most existing EIT images are published at frequencies below 200 kHz. When frequencies exceed 200 kHz, the accuracy of impedance measurements declines due to the influence of distributed circuit parameters such as parasitic capacitance, on-resistance of switch and the series inductance, with a more significant impact on larger impedance. To overcome this limitation, this paper proposes an approach for precision impedance measurement through self-identification of distributed parameter.

Approach: Firstly, the distributed circuit parameters are identified via correction measurements of precision resistances in the frequency range from 5 kHz to 1 MHz; then, the circuit is accurately modeled; finally, transfer impedance measurements during imaging process are corrected using the established circuit model.

Main results: The distributed circuit parameter self-identification method was verified through a goodness-of-fit test, confirming the consistency between the model's predicted values and the actual values of the component. The test results indicate that at 1 MHz, the relative residuals follow a right-skewed distribution with an average value of 0.08%, which demonstrates high model accuracy. At 1 MHz, the measurement relative error after correction for the 499 Ω precision resistor is reduced by 12.01%, and for the 56 pF precision capacitor, the relative error after correction is 0.46%.

Significance: The proposed method can extend the frequency range of EIT and other impedance technologies from below 200 kHz to up to 1 MHz, while ensuring good measurement accuracy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Physiological measurement
Physiological measurement 生物-工程:生物医学
CiteScore
5.50
自引率
9.40%
发文量
124
审稿时长
3 months
期刊介绍: Physiological Measurement publishes papers about the quantitative assessment and visualization of physiological function in clinical research and practice, with an emphasis on the development of new methods of measurement and their validation. Papers are published on topics including: applied physiology in illness and health electrical bioimpedance, optical and acoustic measurement techniques advanced methods of time series and other data analysis biomedical and clinical engineering in-patient and ambulatory monitoring point-of-care technologies novel clinical measurements of cardiovascular, neurological, and musculoskeletal systems. measurements in molecular, cellular and organ physiology and electrophysiology physiological modeling and simulation novel biomedical sensors, instruments, devices and systems measurement standards and guidelines.
期刊最新文献
Detection of occult hemorrhage using multivariate non-invasive technologies: a porcine study. Enhancing the precision of impedance measurement from 5 kHz to 1 MHz through self-identification of parasitic parameters. LumEDA: image luminance based contactless correlates of electrodermal responses. The MSPTDfast photoplethysmography beat detection algorithm: design, benchmarking, and open-source distribution. In-water electrical impedance tomography: EIT and the sea.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1