Fluctuation-driven synergy, redundancy, signal to noise ratio and error correction in protein allostery.

IF 2 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Physical biology Pub Date : 2025-03-05 DOI:10.1088/1478-3975/adb9af
Burak Erman
{"title":"Fluctuation-driven synergy, redundancy, signal to noise ratio and error correction in protein allostery.","authors":"Burak Erman","doi":"10.1088/1478-3975/adb9af","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores the relationship between residue fluctuations and molecular communication in proteins, emphasizing the role of these dynamics in allosteric regulation. We employ computational tools including the Gaussian network model, mutual information, and interaction information, to analyze how stochastic interactions among residues contribute to functional interactions while also introducing noise. Our approach is based on the postulate that residues experience continuous stochastic bombardment from impulses generated by their neighbors, forming a complex network characterized by small-world scaling topology. By mapping these interactions through the Kirchhoff matrix framework, we demonstrate how conserved correlations enhance signaling pathways and provide stability against noise-like fluctuations. Notably, we highlight the importance of selecting relevant eigenvalues to optimize the signal-to-noise ratio in our analyses, a topic that has yet to be thoroughly investigated in the context of residue fluctuations. This work underscores the significance of viewing proteins as adaptive information processing systems, and emphasizes the fundamental mechanisms of biological information processing. The basic idea of this paper is the following: given two interacting residues on an allosteric path, what are the contributions of the remaining residues on this interaction. This naturally leads to the concept of synergy, redundancy and noise in proteins, which we analyze in detail for three proteins CheY, tyrosine phosphatase and<i>β</i>-lactoglobulin.</p>","PeriodicalId":20207,"journal":{"name":"Physical biology","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1088/1478-3975/adb9af","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the relationship between residue fluctuations and molecular communication in proteins, emphasizing the role of these dynamics in allosteric regulation. We employ computational tools including the Gaussian network model, mutual information, and interaction information, to analyze how stochastic interactions among residues contribute to functional interactions while also introducing noise. Our approach is based on the postulate that residues experience continuous stochastic bombardment from impulses generated by their neighbors, forming a complex network characterized by small-world scaling topology. By mapping these interactions through the Kirchhoff matrix framework, we demonstrate how conserved correlations enhance signaling pathways and provide stability against noise-like fluctuations. Notably, we highlight the importance of selecting relevant eigenvalues to optimize the signal-to-noise ratio in our analyses, a topic that has yet to be thoroughly investigated in the context of residue fluctuations. This work underscores the significance of viewing proteins as adaptive information processing systems, and emphasizes the fundamental mechanisms of biological information processing. The basic idea of this paper is the following: given two interacting residues on an allosteric path, what are the contributions of the remaining residues on this interaction. This naturally leads to the concept of synergy, redundancy and noise in proteins, which we analyze in detail for three proteins CheY, tyrosine phosphatase andβ-lactoglobulin.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical biology
Physical biology 生物-生物物理
CiteScore
4.20
自引率
0.00%
发文量
50
审稿时长
3 months
期刊介绍: Physical Biology publishes articles in the broad interdisciplinary field bridging biology with the physical sciences and engineering. This journal focuses on research in which quantitative approaches – experimental, theoretical and modeling – lead to new insights into biological systems at all scales of space and time, and all levels of organizational complexity. Physical Biology accepts contributions from a wide range of biological sub-fields, including topics such as: molecular biophysics, including single molecule studies, protein-protein and protein-DNA interactions subcellular structures, organelle dynamics, membranes, protein assemblies, chromosome structure intracellular processes, e.g. cytoskeleton dynamics, cellular transport, cell division systems biology, e.g. signaling, gene regulation and metabolic networks cells and their microenvironment, e.g. cell mechanics and motility, chemotaxis, extracellular matrix, biofilms cell-material interactions, e.g. biointerfaces, electrical stimulation and sensing, endocytosis cell-cell interactions, cell aggregates, organoids, tissues and organs developmental dynamics, including pattern formation and morphogenesis physical and evolutionary aspects of disease, e.g. cancer progression, amyloid formation neuronal systems, including information processing by networks, memory and learning population dynamics, ecology, and evolution collective action and emergence of collective phenomena.
期刊最新文献
Fluctuation-driven synergy, redundancy, signal to noise ratio and error correction in protein allostery. STIPS algorithm enables tracking labyrinthine patterns and reveals distinct rhythmic dynamics of actin microridges. Electrical homeostasis of the inner mitochondrial membrane potential. Quantum features of the transport through ion channels in the soft knock-on model. Emergence of temporal noise hierarchy in co-regulated genes of multi-output feed-forward loop.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1