Evaluation of Passive Silicone Samplers Compared to Active Sampling Methods for Polycyclic Aromatic Hydrocarbons During Fire Training.

IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Toxics Pub Date : 2025-02-12 DOI:10.3390/toxics13020132
Paro Sen, Miriam Calkins, Keith Stakes, Danielle L Neumann, I-Chen Chen, Gavin P Horn
{"title":"Evaluation of Passive Silicone Samplers Compared to Active Sampling Methods for Polycyclic Aromatic Hydrocarbons During Fire Training.","authors":"Paro Sen, Miriam Calkins, Keith Stakes, Danielle L Neumann, I-Chen Chen, Gavin P Horn","doi":"10.3390/toxics13020132","DOIUrl":null,"url":null,"abstract":"<p><p>Firefighters are occupationally exposed to many chemicals, including polycyclic aromatic hydrocarbons (PAHs), which are formed by the incomplete combustion of organic matter during fire response and training activities. However, due to the harsh environments in which firefighters work, as well as consideration for time and physical safety while wearing bulky equipment, traditional active sampling methods may not be feasible to measure PAH exposures. Silicone passive samplers offer an alternative approach to assess exposure during fire responses and live fire training due to their heat resistance and ease of deployment in remote or time-limited environments. In this study, the primary objective was to investigate and determine the statistical strength of the relationship between active air sampling methods and passive silicone samplers for PAHs. In this study, silicone wristbands were paired with active sampling devices in a series of burn experiments to compare PAH measurements. Silicone-based measurements correlated strongly with active air samples for the dominant PAHs found, naphthalene and phenanthrene; however, detection was limited in the wristbands when air concentrations were low in active samples. In situations where PAH levels are expected to be high and the potential for contaminant loss via off-gassing is low, silicone samplers may be a useful tool for industrial hygienists to measure PAHs in fire and other emergency responses in extreme environments.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"13 2","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics13020132","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Firefighters are occupationally exposed to many chemicals, including polycyclic aromatic hydrocarbons (PAHs), which are formed by the incomplete combustion of organic matter during fire response and training activities. However, due to the harsh environments in which firefighters work, as well as consideration for time and physical safety while wearing bulky equipment, traditional active sampling methods may not be feasible to measure PAH exposures. Silicone passive samplers offer an alternative approach to assess exposure during fire responses and live fire training due to their heat resistance and ease of deployment in remote or time-limited environments. In this study, the primary objective was to investigate and determine the statistical strength of the relationship between active air sampling methods and passive silicone samplers for PAHs. In this study, silicone wristbands were paired with active sampling devices in a series of burn experiments to compare PAH measurements. Silicone-based measurements correlated strongly with active air samples for the dominant PAHs found, naphthalene and phenanthrene; however, detection was limited in the wristbands when air concentrations were low in active samples. In situations where PAH levels are expected to be high and the potential for contaminant loss via off-gassing is low, silicone samplers may be a useful tool for industrial hygienists to measure PAHs in fire and other emergency responses in extreme environments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Toxics
Toxics Chemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍: Toxics (ISSN 2305-6304) is an international, peer-reviewed, open access journal which provides an advanced forum for studies related to all aspects of toxic chemicals and materials. It publishes reviews, regular research papers, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in detail. There is, therefore, no restriction on the maximum length of the papers, although authors should write their papers in a clear and concise way. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of calculations and experimental procedure can be deposited as supplementary material, if it is not possible to publish them along with the text.
期刊最新文献
Air Pollution Exposure and Gestational Diabetes Mellitus Risk: A Retrospective Case-Control Study with Multi-Pollutant Analysis in Wuhan, Hubei Province. Effects of Environmental Chemical Pollutants on Microbiome Diversity: Insights from Shotgun Metagenomics. Impact of Emission Standards on Fine Particulate Matter Toxicity: A Long-Term Analysis in Los Angeles. Ambient Air Pollution and Parkinson's Disease and Alzheimer's Disease: An Updated Meta-Analysis. Network Pharmacology to Unveil the Mechanism of Berberine in the Treatment of Streptococcus suis Meningitis in Humans and Pigs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1