Per- and Poly-Fluoroalkyl Substances, and Organophosphate Flame Retardants in the Upper Yangtze River: Occurrence, Spatiotemporal Distribution, and Risk Assessment.
{"title":"Per- and Poly-Fluoroalkyl Substances, and Organophosphate Flame Retardants in the Upper Yangtze River: Occurrence, Spatiotemporal Distribution, and Risk Assessment.","authors":"Wen Sun, Zhiyou Fu, Yueyue Liu, Yingchen Bai, Yuyan Zhao, Chen Wang, Fengchang Wu","doi":"10.3390/toxics13020116","DOIUrl":null,"url":null,"abstract":"<p><p>Contaminants of Emerging Concern (CECs), including per- and polyfluoroalkyl substances (PFASs) and organophosphate flame retardants (OPFRs), have raised global concerns due to their persistence, bioaccumulation potential, and toxicity. This study presents a comprehensive investigation of the occurrence, spatiotemporal distribution, potential sources, and the ecological and human health risks associated with 18 PFASs and 9 OPFRs in the surface waters of the upper Yangtze River, China. The water samples were collected from the main stream and five major tributaries (Min, Jinsha, Tuo, Jialing, and Wu Rivers) in 2022 and 2023. The total concentration of PFASs and OPFRs ranged from 16.07 to 927.19 ng/L, and 17.36 to 190.42 ng/L, respectively, with a consistently higher concentration observed in the main stream compared to the tributaries. Ultra-short-chain PFASs (e.g., TFMS) and halogenated OPFRs (e.g., TCPP) were the predominant compounds, likely originating from industrial discharges, wastewater effluents, and other anthropogenic sources. Ecological risk assessments indicated low-to-moderate risks at most sampling sites, with higher risks near wastewater discharge points. Human health risk evaluations suggested negligible non-carcinogenic risks but identified potential carcinogenic risks from OPFR exposure for adults at specific locations, particularly in Leshan city. This study highlights the importance of understanding the fate and impacts of PFASs and OPFRs in the upper Yangtze River, and provides valuable insights for developing targeted pollution control strategies and risk management measures.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"13 2","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11860806/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics13020116","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Contaminants of Emerging Concern (CECs), including per- and polyfluoroalkyl substances (PFASs) and organophosphate flame retardants (OPFRs), have raised global concerns due to their persistence, bioaccumulation potential, and toxicity. This study presents a comprehensive investigation of the occurrence, spatiotemporal distribution, potential sources, and the ecological and human health risks associated with 18 PFASs and 9 OPFRs in the surface waters of the upper Yangtze River, China. The water samples were collected from the main stream and five major tributaries (Min, Jinsha, Tuo, Jialing, and Wu Rivers) in 2022 and 2023. The total concentration of PFASs and OPFRs ranged from 16.07 to 927.19 ng/L, and 17.36 to 190.42 ng/L, respectively, with a consistently higher concentration observed in the main stream compared to the tributaries. Ultra-short-chain PFASs (e.g., TFMS) and halogenated OPFRs (e.g., TCPP) were the predominant compounds, likely originating from industrial discharges, wastewater effluents, and other anthropogenic sources. Ecological risk assessments indicated low-to-moderate risks at most sampling sites, with higher risks near wastewater discharge points. Human health risk evaluations suggested negligible non-carcinogenic risks but identified potential carcinogenic risks from OPFR exposure for adults at specific locations, particularly in Leshan city. This study highlights the importance of understanding the fate and impacts of PFASs and OPFRs in the upper Yangtze River, and provides valuable insights for developing targeted pollution control strategies and risk management measures.
ToxicsChemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍:
Toxics (ISSN 2305-6304) is an international, peer-reviewed, open access journal which provides an advanced forum for studies related to all aspects of toxic chemicals and materials. It publishes reviews, regular research papers, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in detail. There is, therefore, no restriction on the maximum length of the papers, although authors should write their papers in a clear and concise way. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of calculations and experimental procedure can be deposited as supplementary material, if it is not possible to publish them along with the text.