CDP-DAG synthases regulate plant growth and broad-spectrum disease resistance.

Plant signaling & behavior Pub Date : 2025-12-01 Epub Date: 2025-02-25 DOI:10.1080/15592324.2025.2471503
Ronglei Tan, Gan Sha, Qiuwen Gong, Lei Yang, Wei Yang, Xiaofan Liu, Yufei Li, Jiasen Cheng, Xin Qiao Du, Hongwei Xue, Qiang Li, Jie Luo, Guotian Li
{"title":"CDP-DAG synthases regulate plant growth and broad-spectrum disease resistance.","authors":"Ronglei Tan, Gan Sha, Qiuwen Gong, Lei Yang, Wei Yang, Xiaofan Liu, Yufei Li, Jiasen Cheng, Xin Qiao Du, Hongwei Xue, Qiang Li, Jie Luo, Guotian Li","doi":"10.1080/15592324.2025.2471503","DOIUrl":null,"url":null,"abstract":"<p><p>Phosphatidic acid (PA) functions as a cell membrane component and signaling molecule in plants. PA metabolism has multiple routes, in one of which PA is converted into cytidine diphosphate diacylglycerol (CDP-DAG) by CDP-DAG synthases (CDSs). <i>CDS</i> genes are highly conserved in plants. Here, we found that knock-down of the <i>CDS</i> gene enhanced the resistance of <i>Arabidopsis thaliana</i> to multiple pathogens, with a growth penalty. When <i>Arabidopsis</i> leaves were treated with chitin or flg22, reactive oxygen species (ROS) production in <i>cds</i> mutants was significantly higher than that in the wild-type (WT). Similarly, phosphorylation of mitogen-activated protein kinases (MAPKs) in the <i>cds1cds2</i> double mutant was significantly increased compared to the WT. By integrating lipidomics, transcriptomics, and metabolomics data, PA accumulation was observed in mutants <i>cds1cds2</i>, activating the jasmonic acid (JA) and salicylic acid (SA) signaling pathway, and increasing transcript levels of plant defense-related genes. Significant accumulation of the downstream metabolites including serotonin and 5-methoxyindole was also found, which plays important roles in plant immunity. In conclusion, our study indicated the role of CDSs in broad-spectrum disease resistance in <i>Arabidopsis</i> and that CDSs are involved in plant metabolic regulation.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"20 1","pages":"2471503"},"PeriodicalIF":0.0000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11864314/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant signaling & behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15592324.2025.2471503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/25 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Phosphatidic acid (PA) functions as a cell membrane component and signaling molecule in plants. PA metabolism has multiple routes, in one of which PA is converted into cytidine diphosphate diacylglycerol (CDP-DAG) by CDP-DAG synthases (CDSs). CDS genes are highly conserved in plants. Here, we found that knock-down of the CDS gene enhanced the resistance of Arabidopsis thaliana to multiple pathogens, with a growth penalty. When Arabidopsis leaves were treated with chitin or flg22, reactive oxygen species (ROS) production in cds mutants was significantly higher than that in the wild-type (WT). Similarly, phosphorylation of mitogen-activated protein kinases (MAPKs) in the cds1cds2 double mutant was significantly increased compared to the WT. By integrating lipidomics, transcriptomics, and metabolomics data, PA accumulation was observed in mutants cds1cds2, activating the jasmonic acid (JA) and salicylic acid (SA) signaling pathway, and increasing transcript levels of plant defense-related genes. Significant accumulation of the downstream metabolites including serotonin and 5-methoxyindole was also found, which plays important roles in plant immunity. In conclusion, our study indicated the role of CDSs in broad-spectrum disease resistance in Arabidopsis and that CDSs are involved in plant metabolic regulation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The inhibitory activities of two compounds from Securidaca longepedunculata Fresen on the acetylcholinesterase from wheat pest Schizaphis graminum Rondani: in silico analysis. Expression characteristics of CsESA1 in citrus and analysis of its interacting protein. Overexpression of ORP1C gene increases the rice resistance to Xanthomonas oryzae pv. oryzae through negatively regulating transcription activator-like effectors translocation. Aba-induced active stomatal closure in bulb scales of Lanzhou lily. The biochemical and molecular mechanisms of plants: a review on insect herbivory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1