Longitudinal assessment of structural and locomotor deficits as a prediction of severity in the collagenase-induced mouse model of osteoarthritis

IF 4.9 2区 医学 Q1 Medicine Arthritis Research & Therapy Pub Date : 2025-02-26 DOI:10.1186/s13075-025-03507-w
Anne-Laure Mausset-Bonnefont, Karine Toupet, Christian Jorgensen, Danièle Noël
{"title":"Longitudinal assessment of structural and locomotor deficits as a prediction of severity in the collagenase-induced mouse model of osteoarthritis","authors":"Anne-Laure Mausset-Bonnefont, Karine Toupet, Christian Jorgensen, Danièle Noël","doi":"10.1186/s13075-025-03507-w","DOIUrl":null,"url":null,"abstract":"The aim of this study was to provide an in-depth longitudinal locomotor and structural characterisation of the collagenase-induced osteoarthritis (CIOA) mouse model, using the most relevant and up-to-date non-invasive locomotor phenotyping and imaging methods. The ultimate goal of this study was to predict histological scores, the gold standard parameter in osteoarthritis (OA), based on locomotor or structural deficits. The CIOA model was induced in C57BL/6 male mice, which were then maintained in their home cage with or without a running wheel for 6 weeks. Both global and fine locomotor effects were measured using the open field and Catwalk™ tests. Imaging of bone and cartilage was performed using either µCT, contrast-enhanced µCT or confocal laser scanning microscopy (CLSM) at different time points. Correlations between functional or structural changes and histological scores were sought in order to provide tools for predicting histological degradation. Locomotor deficits were observed at early time points (days 3 to 9) but did not persist to the end of the experiment. Signs of inflammation appeared as early as day 9. They worsened on day 28 as the disease progressed and meniscal calcifications were observed by µCT. The early functional and structural changes correlated with the histological scores measured post mortem and some specific locomotor or structural parameters were identified as predictors of histological changes. Free exercise (voluntary running wheel activity) did not seem to influence the severity of the observed changes. Open-field quantification of kinetic parameters is a simple and timely relevant test to detect early locomotor changes and predict histological changes. Meniscal calcifications and osteophyte formation, which can be observed by µCT at early time points, are also highly predictive of OA severity. These two non-invasive techniques are very useful for longitudinal monitoring of mice and OA score prediction.","PeriodicalId":8419,"journal":{"name":"Arthritis Research & Therapy","volume":"32 1","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arthritis Research & Therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13075-025-03507-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this study was to provide an in-depth longitudinal locomotor and structural characterisation of the collagenase-induced osteoarthritis (CIOA) mouse model, using the most relevant and up-to-date non-invasive locomotor phenotyping and imaging methods. The ultimate goal of this study was to predict histological scores, the gold standard parameter in osteoarthritis (OA), based on locomotor or structural deficits. The CIOA model was induced in C57BL/6 male mice, which were then maintained in their home cage with or without a running wheel for 6 weeks. Both global and fine locomotor effects were measured using the open field and Catwalk™ tests. Imaging of bone and cartilage was performed using either µCT, contrast-enhanced µCT or confocal laser scanning microscopy (CLSM) at different time points. Correlations between functional or structural changes and histological scores were sought in order to provide tools for predicting histological degradation. Locomotor deficits were observed at early time points (days 3 to 9) but did not persist to the end of the experiment. Signs of inflammation appeared as early as day 9. They worsened on day 28 as the disease progressed and meniscal calcifications were observed by µCT. The early functional and structural changes correlated with the histological scores measured post mortem and some specific locomotor or structural parameters were identified as predictors of histological changes. Free exercise (voluntary running wheel activity) did not seem to influence the severity of the observed changes. Open-field quantification of kinetic parameters is a simple and timely relevant test to detect early locomotor changes and predict histological changes. Meniscal calcifications and osteophyte formation, which can be observed by µCT at early time points, are also highly predictive of OA severity. These two non-invasive techniques are very useful for longitudinal monitoring of mice and OA score prediction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.60
自引率
2.00%
发文量
261
审稿时长
14 weeks
期刊介绍: Established in 1999, Arthritis Research and Therapy is an international, open access, peer-reviewed journal, publishing original articles in the area of musculoskeletal research and therapy as well as, reviews, commentaries and reports. A major focus of the journal is on the immunologic processes leading to inflammation, damage and repair as they relate to autoimmune rheumatic and musculoskeletal conditions, and which inform the translation of this knowledge into advances in clinical care. Original basic, translational and clinical research is considered for publication along with results of early and late phase therapeutic trials, especially as they pertain to the underpinning science that informs clinical observations in interventional studies.
期刊最新文献
Akt2 inhibition alleviates temporomandibular joint osteoarthritis by preventing subchondral bone loss Longitudinal assessment of structural and locomotor deficits as a prediction of severity in the collagenase-induced mouse model of osteoarthritis Blood gene expression of Toll-like receptors in SLE patients with lupus nephritis or neuropsychiatric systemic lupus erythematosus Targeting osteoclast-derived DPP4 alleviates inflammation-mediated ectopic bone formation in ankylosing spondylitis Impact of disease duration on systemic clinical profile in Sjogren’s syndrome
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1