Ehtasham Javed, Isabel Suárez-Méndez, Gianluca Susi, Juan Verdejo Román, J Matias Palva, Fernando Maestú, Satu Palva
{"title":"A Shift Toward Supercritical Brain Dynamics Predicts Alzheimers Disease Progression","authors":"Ehtasham Javed, Isabel Suárez-Méndez, Gianluca Susi, Juan Verdejo Román, J Matias Palva, Fernando Maestú, Satu Palva","doi":"10.1523/jneurosci.0688-24.2024","DOIUrl":null,"url":null,"abstract":"<p>Alzheimer’s disease (AD) is the most common form of dementia with continuum of disease progression of increasing severity from subjective cognitive decline (SCD) to mild cognitive impairment (MCI) and lastly to AD. The transition from MCI to AD has been linked to brain hypersynchronization, but the underlying mechanisms leading to this are unknown. Here, we hypothesized that excessive excitation in AD disease progression would shift brain dynamics toward supercriticality across an extended regime of critical-like dynamics. In this framework, healthy brain activity during aging preserves operation at near the critical phase transition at balanced excitation–inhibition (E/I). To test this hypothesis, we used source-reconstructed resting-state MEG data from a cross-sectional cohort (<I>N</I> = 343) of individuals with SCD, MCI, and healthy controls (HC) as well as from a longitudinal cohort (<I>N</I> = 45) of MCI patients. We then assessed brain criticality by quantifying long-range temporal correlations (LRTCs) and functional EI (fE/I) of neuronal oscillations. LRTCs were attenuated in SCD in spectrally and anatomically constrained regions while this breakdown was progressively more widespread in MC. In parallel, fE/I was increased in the MCI but not in the SC cohort. Both observations also predicted the disease progression in the longitudinal cohort. Finally, using machine learning trained on functional (LRTCs, fE/I) and structural (MTL volumes) features, we show that LRTCs and f/EI are the most informative features for accurate classification of individuals with SCD while structural changes accurate classify the individuals with MCI. These findings establish that a shift toward supercritical brain dynamics reflects early AD disease progression.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":"68 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/jneurosci.0688-24.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer’s disease (AD) is the most common form of dementia with continuum of disease progression of increasing severity from subjective cognitive decline (SCD) to mild cognitive impairment (MCI) and lastly to AD. The transition from MCI to AD has been linked to brain hypersynchronization, but the underlying mechanisms leading to this are unknown. Here, we hypothesized that excessive excitation in AD disease progression would shift brain dynamics toward supercriticality across an extended regime of critical-like dynamics. In this framework, healthy brain activity during aging preserves operation at near the critical phase transition at balanced excitation–inhibition (E/I). To test this hypothesis, we used source-reconstructed resting-state MEG data from a cross-sectional cohort (N = 343) of individuals with SCD, MCI, and healthy controls (HC) as well as from a longitudinal cohort (N = 45) of MCI patients. We then assessed brain criticality by quantifying long-range temporal correlations (LRTCs) and functional EI (fE/I) of neuronal oscillations. LRTCs were attenuated in SCD in spectrally and anatomically constrained regions while this breakdown was progressively more widespread in MC. In parallel, fE/I was increased in the MCI but not in the SC cohort. Both observations also predicted the disease progression in the longitudinal cohort. Finally, using machine learning trained on functional (LRTCs, fE/I) and structural (MTL volumes) features, we show that LRTCs and f/EI are the most informative features for accurate classification of individuals with SCD while structural changes accurate classify the individuals with MCI. These findings establish that a shift toward supercritical brain dynamics reflects early AD disease progression.
期刊介绍:
JNeurosci (ISSN 0270-6474) is an official journal of the Society for Neuroscience. It is published weekly by the Society, fifty weeks a year, one volume a year. JNeurosci publishes papers on a broad range of topics of general interest to those working on the nervous system. Authors now have an Open Choice option for their published articles