A five-drug class model using routinely available clinical features to optimise prescribing in type 2 diabetes: a prediction model development and validation study

John M Dennis, Katherine G Young, Pedro Cardoso, Laura M Güdemann, Andrew P McGovern, Andrew Farmer, Rury R Holman, Naveed Sattar, Trevelyan J McKinley, Ewan R Pearson, Angus G Jones, Beverley M Shields, Andrew T Hattersley
{"title":"A five-drug class model using routinely available clinical features to optimise prescribing in type 2 diabetes: a prediction model development and validation study","authors":"John M Dennis, Katherine G Young, Pedro Cardoso, Laura M Güdemann, Andrew P McGovern, Andrew Farmer, Rury R Holman, Naveed Sattar, Trevelyan J McKinley, Ewan R Pearson, Angus G Jones, Beverley M Shields, Andrew T Hattersley","doi":"10.1016/s0140-6736(24)02617-5","DOIUrl":null,"url":null,"abstract":"<h3>Background</h3>Data to support individualised choice of optimal glucose-lowering therapy are scarce for people with type 2 diabetes. We aimed to establish whether routinely available clinical features can be used to predict the relative glycaemic effectiveness of five glucose-lowering drug classes.<h3>Methods</h3>We developed and validated a five-drug class model to predict the relative glycaemic effectiveness, in terms of absolute 12-month glycated haemoglobin (HbA<sub>1c</sub>), for initiating dipeptidyl peptidase-4 inhibitors, glucagon-like peptide-1 receptor agonists, sodium–glucose co-transporter-2 inhibitors, sulfonylureas, and thiazolidinediones. The model used nine routinely available clinical features of people with type 2 diabetes at drug initiation as predictive factors (age, duration of diabetes, sex, and baseline HbA<sub>1c</sub>, BMI, estimated glomerular filtration rate, HDL cholesterol, total cholesterol, and alanine aminotransferase). The model was developed and validated with observational data from England (Clinical Practice Research Datalink [CPRD] Aurum), in people with type 2 diabetes aged 18–79 years initiating one of the five drug classes between Jan 1, 2004, and Oct 14, 2020, with holdback validation according to geographical region and calendar period. The model was further validated in individual-level data from three published randomised drug trials in type 2 diabetes (TriMaster three-drug crossover trial and two parallel-arm trials [<span><span>NCT00622284</span><svg aria-label=\"Opens in new window\" focusable=\"false\" height=\"20\" viewbox=\"0 0 8 8\"><path d=\"M1.12949 2.1072V1H7V6.85795H5.89111V2.90281L0.784057 8L0 7.21635L5.11902 2.1072H1.12949Z\"></path></svg></span> and <span><span>NCT01167881</span><svg aria-label=\"Opens in new window\" focusable=\"false\" height=\"20\" viewbox=\"0 0 8 8\"><path d=\"M1.12949 2.1072V1H7V6.85795H5.89111V2.90281L0.784057 8L0 7.21635L5.11902 2.1072H1.12949Z\"></path></svg></span>]). For validation in CPRD, we assessed differences in observed glycaemic effectiveness between matched (1:1) concordant and discordant groups receiving therapy that was either concordant or discordant with model-predicted optimal therapy, with optimal therapy defined as the drug class with the highest predicted glycaemic effectiveness (ie, lowest predicted 12-month HbA<sub>1c</sub>). Further validation involved pairwise drug class comparisons in all datasets. We also evaluated associations with long-term outcomes in model-concordant and model-discordant groups in CPRD, assessing 5-year risks of glycaemic failure (confirmed HbA<sub>1c</sub> ≥69 mmol/mol), all-cause mortality, major adverse cardiovascular events or heart failure (MACE-HF) outcomes, renal progression, and microvascular complications using Cox proportional hazards regression adjusting for relevant demographic and clinical covariates.<h3>Findings</h3>The five-drug class model was developed from 100 107 drug initiations in CPRD. In the overall CPRD cohort (combined development and validation cohorts), 32 305 (15·2%) of 212 166 drug initiations were of the model-predicted optimal therapy. In model-concordant groups, mean observed 12-month HbA<sub>1c</sub> benefit was 5·3 mmol/mol (95% CI 4·9–5·7) in the CPRD geographical validation cohort (n=24 746 drug initiations, n=12 373 matched pairs) and 5·0 mmol/mol (4·3–5·6) in the CPRD temporal validation cohort (n=9682 drug initiations, n=4841 matched pairs) compared with matched model-discordant groups. Predicted HbA<sub>1c</sub> differences were well calibrated with observed HbA<sub>1c</sub> differences in the three clinical trials in pairwise drug class comparisons, and in pairwise comparisons of the five drug classes in CPRD. 5-year risk of glycaemic failure was lower in model-concordant versus model-discordant groups in CPRD (adjusted hazard ratio [aHR] 0·62 [95% CI 0·59–0·64]). For long-term non-glycaemic outcomes, model-concordant versus model-discordant groups had a similar 5-year risk of all-cause mortality (aHR 0·95 [0·83–1·09]) and lower risks of MACE-HF outcomes (aHR 0·85 [0·76–0·95]), renal progression (aHR 0·71 [0·64–0·79]), and microvascular complications (aHR 0·86 [0·78–0·96]).<h3>Interpretation</h3>We have developed a five-drug class model that uses routine clinical data to identify optimal glucose-lowering therapies for people with type 2 diabetes. Individuals on model-predicted optimal therapy had lower 12-month HbA<sub>1c</sub>, were less likely to need additional glucose-lowering therapy, and had a lower risk of diabetes complications than individuals on non-optimal therapy. With setting-specific optimisation, the use of routinely collected parameters means that the model is easy to introduce to clinical care in most countries worldwide.<h3>Funding</h3>UK Medical Research Council.","PeriodicalId":22898,"journal":{"name":"The Lancet","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Lancet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/s0140-6736(24)02617-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Data to support individualised choice of optimal glucose-lowering therapy are scarce for people with type 2 diabetes. We aimed to establish whether routinely available clinical features can be used to predict the relative glycaemic effectiveness of five glucose-lowering drug classes.

Methods

We developed and validated a five-drug class model to predict the relative glycaemic effectiveness, in terms of absolute 12-month glycated haemoglobin (HbA1c), for initiating dipeptidyl peptidase-4 inhibitors, glucagon-like peptide-1 receptor agonists, sodium–glucose co-transporter-2 inhibitors, sulfonylureas, and thiazolidinediones. The model used nine routinely available clinical features of people with type 2 diabetes at drug initiation as predictive factors (age, duration of diabetes, sex, and baseline HbA1c, BMI, estimated glomerular filtration rate, HDL cholesterol, total cholesterol, and alanine aminotransferase). The model was developed and validated with observational data from England (Clinical Practice Research Datalink [CPRD] Aurum), in people with type 2 diabetes aged 18–79 years initiating one of the five drug classes between Jan 1, 2004, and Oct 14, 2020, with holdback validation according to geographical region and calendar period. The model was further validated in individual-level data from three published randomised drug trials in type 2 diabetes (TriMaster three-drug crossover trial and two parallel-arm trials [NCT00622284 and NCT01167881]). For validation in CPRD, we assessed differences in observed glycaemic effectiveness between matched (1:1) concordant and discordant groups receiving therapy that was either concordant or discordant with model-predicted optimal therapy, with optimal therapy defined as the drug class with the highest predicted glycaemic effectiveness (ie, lowest predicted 12-month HbA1c). Further validation involved pairwise drug class comparisons in all datasets. We also evaluated associations with long-term outcomes in model-concordant and model-discordant groups in CPRD, assessing 5-year risks of glycaemic failure (confirmed HbA1c ≥69 mmol/mol), all-cause mortality, major adverse cardiovascular events or heart failure (MACE-HF) outcomes, renal progression, and microvascular complications using Cox proportional hazards regression adjusting for relevant demographic and clinical covariates.

Findings

The five-drug class model was developed from 100 107 drug initiations in CPRD. In the overall CPRD cohort (combined development and validation cohorts), 32 305 (15·2%) of 212 166 drug initiations were of the model-predicted optimal therapy. In model-concordant groups, mean observed 12-month HbA1c benefit was 5·3 mmol/mol (95% CI 4·9–5·7) in the CPRD geographical validation cohort (n=24 746 drug initiations, n=12 373 matched pairs) and 5·0 mmol/mol (4·3–5·6) in the CPRD temporal validation cohort (n=9682 drug initiations, n=4841 matched pairs) compared with matched model-discordant groups. Predicted HbA1c differences were well calibrated with observed HbA1c differences in the three clinical trials in pairwise drug class comparisons, and in pairwise comparisons of the five drug classes in CPRD. 5-year risk of glycaemic failure was lower in model-concordant versus model-discordant groups in CPRD (adjusted hazard ratio [aHR] 0·62 [95% CI 0·59–0·64]). For long-term non-glycaemic outcomes, model-concordant versus model-discordant groups had a similar 5-year risk of all-cause mortality (aHR 0·95 [0·83–1·09]) and lower risks of MACE-HF outcomes (aHR 0·85 [0·76–0·95]), renal progression (aHR 0·71 [0·64–0·79]), and microvascular complications (aHR 0·86 [0·78–0·96]).

Interpretation

We have developed a five-drug class model that uses routine clinical data to identify optimal glucose-lowering therapies for people with type 2 diabetes. Individuals on model-predicted optimal therapy had lower 12-month HbA1c, were less likely to need additional glucose-lowering therapy, and had a lower risk of diabetes complications than individuals on non-optimal therapy. With setting-specific optimisation, the use of routinely collected parameters means that the model is easy to introduce to clinical care in most countries worldwide.

Funding

UK Medical Research Council.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用常规临床特征优化 2 型糖尿病处方的五种药物类别模型:预测模型的开发和验证研究
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tipu Aziz The Health Index: a framework to guide health-driven prosperity Towards a European imaging infrastructure for Alzheimer's disease Decolonise publishing to reduce inequalities in critical care Gene therapy for AMD: better as an adjuvant than a replacement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1