{"title":"Integration of a non-precious pyrolyzed Cu-doped ZIF as an oxygen depolarized cathode in an advanced chlor-alkali electrolyzer","authors":"Tahereh Jangjooye Shaldehi , Lele Zhao , Teresa Andreu , Soosan Rowshanzamir , Ignasi Sirés","doi":"10.1016/j.electacta.2025.145929","DOIUrl":null,"url":null,"abstract":"<div><div>Oxygen reduction is the critical step in advanced chlor-alkali electrolysis, which has motivated extensive research in catalyst development for improved efficiency and durability. This study investigates the oxygen reduction reaction (ORR) on Cu-based electrocatalysts supported on N-doped carbon (Cu/NC), derived from a Cu-modified zeolitic imidazolate framework (ZIF), and their ultimate performance in a chlor-alkali electrolyzer. Through comprehensive electrochemical characterization in 0.1 M NaOH solution, values of <em>E</em><sub>onset</sub> = 0.87 V and <em>E</em><sub>1/</sub><sub>2</sub> = 0.75 V (<em>vs.</em> RHE) were obtained, which are competitive with commercial Pt/C despite the superior <em>j</em> achieved by the latter in LSV tests. The electron transfer number (<em>n</em>) of the optimum Cu/NC was 4, very close to benchmark catalyst Pt/C 20 wt. % (<em>n</em> = 3.94). Cu/NC had a low Tafel slope (128 mV dec<sup>−1</sup>), thus speeding up the ORR on this nanocatalyst. Additionally, chronoamperometry and accelerated durability tests demonstrated the long-term stability of Cu/NC for 10 h. The catalyst was assembled as an oxygen depolarized cathode (ODC) in a purpose-designed advanced chlor-alkali electrolyzer, resulting in a cell voltage of 2.1 V at 1 kA m<sup>-2</sup> and 80 °C, which underscores the potential of Cu-based nanocatalysts in electrochemical energy devices. This research serves to leverage insights for the use of advanced electrocatalysts to enhance the efficiency and sustainability of chlor-alkali electrolysis.</div></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"522 ","pages":"Article 145929"},"PeriodicalIF":5.5000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013468625002920","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Oxygen reduction is the critical step in advanced chlor-alkali electrolysis, which has motivated extensive research in catalyst development for improved efficiency and durability. This study investigates the oxygen reduction reaction (ORR) on Cu-based electrocatalysts supported on N-doped carbon (Cu/NC), derived from a Cu-modified zeolitic imidazolate framework (ZIF), and their ultimate performance in a chlor-alkali electrolyzer. Through comprehensive electrochemical characterization in 0.1 M NaOH solution, values of Eonset = 0.87 V and E1/2 = 0.75 V (vs. RHE) were obtained, which are competitive with commercial Pt/C despite the superior j achieved by the latter in LSV tests. The electron transfer number (n) of the optimum Cu/NC was 4, very close to benchmark catalyst Pt/C 20 wt. % (n = 3.94). Cu/NC had a low Tafel slope (128 mV dec−1), thus speeding up the ORR on this nanocatalyst. Additionally, chronoamperometry and accelerated durability tests demonstrated the long-term stability of Cu/NC for 10 h. The catalyst was assembled as an oxygen depolarized cathode (ODC) in a purpose-designed advanced chlor-alkali electrolyzer, resulting in a cell voltage of 2.1 V at 1 kA m-2 and 80 °C, which underscores the potential of Cu-based nanocatalysts in electrochemical energy devices. This research serves to leverage insights for the use of advanced electrocatalysts to enhance the efficiency and sustainability of chlor-alkali electrolysis.
期刊介绍:
Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.