Light-Mediated Growth of Gold Nanoplates Carried Out in Total Darkness

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2025-02-26 DOI:10.1021/acsnano.5c01191
Zachary R. Lawson, Luca Ciambriello, Brendan D. Nieukirk, John Howe, Runze Tang, Irvin A. Servin, Luca Gavioli, Robert A. Hughes, Svetlana Neretina
{"title":"Light-Mediated Growth of Gold Nanoplates Carried Out in Total Darkness","authors":"Zachary R. Lawson, Luca Ciambriello, Brendan D. Nieukirk, John Howe, Runze Tang, Irvin A. Servin, Luca Gavioli, Robert A. Hughes, Svetlana Neretina","doi":"10.1021/acsnano.5c01191","DOIUrl":null,"url":null,"abstract":"The plasmon-mediated growth of noble metal nanoplates through the reduction of metal precursors onto resonantly excited seeds lined with planar defects stands out as one of the triumphs of photochemistry and nanometal synthesis. Such growth modes are, however, not without their drawbacks and, with a lack of suitable alternatives, limitations remain on the use of light as a synthetic control. Herein, a two-reagent seed-mediated gold nanoplate synthesis is demonstrated as a photochemical pathway where the illumination of the growth solution, as opposed to the emerging nanoplates, is the key requirement for growth. With long-lived reaction products, it becomes possible to optically prime the growth solution prior to the insertion of substrate-immobilized seeds and then carry out a seemingly paradoxical synthesis in which light-mediated growth occurs in total darkness. The redox chemistry responsible for nanoplate growth can be induced either through the direct optical excitation of the growth solution using short-wavelength visible light or at longer wavelengths through the plasmonic excitation of spherical colloidal gold nanoparticles added to the growth solution. With the former acting as a high-level wavelength-dependent control over nanoplate synthesis and the latter demonstrating plasmon-mediated metal deposition that is spatially and temporally isolated from the resonant excitation, the study forwards the use of light as an external driver for nanostructure synthesis.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"1 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c01191","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The plasmon-mediated growth of noble metal nanoplates through the reduction of metal precursors onto resonantly excited seeds lined with planar defects stands out as one of the triumphs of photochemistry and nanometal synthesis. Such growth modes are, however, not without their drawbacks and, with a lack of suitable alternatives, limitations remain on the use of light as a synthetic control. Herein, a two-reagent seed-mediated gold nanoplate synthesis is demonstrated as a photochemical pathway where the illumination of the growth solution, as opposed to the emerging nanoplates, is the key requirement for growth. With long-lived reaction products, it becomes possible to optically prime the growth solution prior to the insertion of substrate-immobilized seeds and then carry out a seemingly paradoxical synthesis in which light-mediated growth occurs in total darkness. The redox chemistry responsible for nanoplate growth can be induced either through the direct optical excitation of the growth solution using short-wavelength visible light or at longer wavelengths through the plasmonic excitation of spherical colloidal gold nanoparticles added to the growth solution. With the former acting as a high-level wavelength-dependent control over nanoplate synthesis and the latter demonstrating plasmon-mediated metal deposition that is spatially and temporally isolated from the resonant excitation, the study forwards the use of light as an external driver for nanostructure synthesis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Bond Dissociation Dynamics of Single Molecules on a Metal Surface Reduced Thermal Conductivity in SnSe2 Moiré Superlattices Adaptive All-Fiber Actuator for Human–Environment Interaction Coordinated Ionic Self-Assembly of Highly Ordered Mesoporous Pt2Sn2S6 Networks for Boosted Hydrogen Evolution Direct Observation of Phase Change Accommodating Hydrogen Uptake in Bimetallic Nanoparticles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1