Adaptive All-Fiber Actuator for Human–Environment Interaction

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2025-03-05 DOI:10.1021/acsnano.4c17638
Yufan Zhang, Tao Zhang, Yunjie Gu, Minghui Fan, Yue Zhang, Shuang Wang, Yong Xia, Xinran Zhou, Jiaqing Xiong
{"title":"Adaptive All-Fiber Actuator for Human–Environment Interaction","authors":"Yufan Zhang, Tao Zhang, Yunjie Gu, Minghui Fan, Yue Zhang, Shuang Wang, Yong Xia, Xinran Zhou, Jiaqing Xiong","doi":"10.1021/acsnano.4c17638","DOIUrl":null,"url":null,"abstract":"A closed-loop pathway of “efficient actuation-synchronous sensing-multimodal feedback” is crucial for actuators to adapt to complex scenarios and human–environment interactions. Strategies to reconcile mechanics-guaranteed adaptive actuation with multimodal responses and perceptivity remain challenging. Through a continuous electrospinning strategy to construct a reinforced fiber-interlocked interface, a bilayer fiber membrane (TCTR) actuator composed of highly aligned fiber and hierarchical structures is developed to obtain efficient photothermal performance (22.9 °C min<sup>–1</sup>), excellent mechanical toughness (17.9 MJ m<sup>–3</sup>), and intuitive color changes (dark purple red to bright pale yellow with lightness variation of 68). This humidity-dominated and photothermal-assisted-responsive actuator demonstrates superior actuation response (0.67 cm<sup>–1</sup> s<sup>–1</sup>) and bending curvature (7.37 cm<sup>–1</sup>) with electro-visual cooperative perceptivity. Integrated with the actuation-triggered triboelectric self-powered sensing and synchronous thermochromic effect, the TCTR actuator can be differentially programmed to perceive material types and object temperature (with a sensitivity of 99.5%), and visualize writing paths. By optimizing fiber alignment and assembly pattern, TCTR demonstrates utility as filter material, smart mask, and electronic textile, which can sense and visualize air contamination degrees, environmental temperature, and respiratory status, as well as achieve thermal management/alarming. This work proposes materials with mechano-electrical-optical cooperation and inspires a facile strategy for human–environment interactive actuators with multiscenario adaptivity.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"30 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c17638","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A closed-loop pathway of “efficient actuation-synchronous sensing-multimodal feedback” is crucial for actuators to adapt to complex scenarios and human–environment interactions. Strategies to reconcile mechanics-guaranteed adaptive actuation with multimodal responses and perceptivity remain challenging. Through a continuous electrospinning strategy to construct a reinforced fiber-interlocked interface, a bilayer fiber membrane (TCTR) actuator composed of highly aligned fiber and hierarchical structures is developed to obtain efficient photothermal performance (22.9 °C min–1), excellent mechanical toughness (17.9 MJ m–3), and intuitive color changes (dark purple red to bright pale yellow with lightness variation of 68). This humidity-dominated and photothermal-assisted-responsive actuator demonstrates superior actuation response (0.67 cm–1 s–1) and bending curvature (7.37 cm–1) with electro-visual cooperative perceptivity. Integrated with the actuation-triggered triboelectric self-powered sensing and synchronous thermochromic effect, the TCTR actuator can be differentially programmed to perceive material types and object temperature (with a sensitivity of 99.5%), and visualize writing paths. By optimizing fiber alignment and assembly pattern, TCTR demonstrates utility as filter material, smart mask, and electronic textile, which can sense and visualize air contamination degrees, environmental temperature, and respiratory status, as well as achieve thermal management/alarming. This work proposes materials with mechano-electrical-optical cooperation and inspires a facile strategy for human–environment interactive actuators with multiscenario adaptivity.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于人与环境交互的自适应全纤维致动器
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Bond Dissociation Dynamics of Single Molecules on a Metal Surface Reduced Thermal Conductivity in SnSe2 Moiré Superlattices Adaptive All-Fiber Actuator for Human–Environment Interaction Coordinated Ionic Self-Assembly of Highly Ordered Mesoporous Pt2Sn2S6 Networks for Boosted Hydrogen Evolution Direct Observation of Phase Change Accommodating Hydrogen Uptake in Bimetallic Nanoparticles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1