Shuai Wu;Yubing Li;Tao Tan;Zemeng Huang;Jiaze Qiao;Xiuping Li
{"title":"An Automated Circuit Topology Generation and Optimization Method for CMOS Low-Noise Amplifiers","authors":"Shuai Wu;Yubing Li;Tao Tan;Zemeng Huang;Jiaze Qiao;Xiuping Li","doi":"10.1109/TCSI.2025.3528372","DOIUrl":null,"url":null,"abstract":"This article presents an automated circuit topology generation and optimization method for RF low-noise amplifiers (LNAs). For circuit topology generation, a three-port small-signal model based on precomputed lookup tables (LUT) is proposed to accurately describe the transistors. Based on the model, a novel predefined building block (PBB) library for LNA is created and symbolically analyzed by three-port network parameters and noise correlation matrix. Then, graph-grammar-based tree structure generation (GTSG) is applied to efficiently realize circuit topology generation. For circuit optimization, the rule-guided non-dominated sorting genetic algorithm (RG-NSGA-II) is applied to optimize the performances of generated circuit topologies. To validate, four typical examples of X-band LNA based on a 130-nm CMOS process are presented, and the results are verified using Spectre. This method can automatically generate 936 size-free circuit topologies, even a variety of inspiring topologies. Compared to traditional NSGA-II, the RG-NSGA-II shows enhanced optimization speed in four examples, with the mean absolute percentage error (MAPE) <5% to Spectre.","PeriodicalId":13039,"journal":{"name":"IEEE Transactions on Circuits and Systems I: Regular Papers","volume":"72 3","pages":"1126-1139"},"PeriodicalIF":5.2000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems I: Regular Papers","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10856709/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This article presents an automated circuit topology generation and optimization method for RF low-noise amplifiers (LNAs). For circuit topology generation, a three-port small-signal model based on precomputed lookup tables (LUT) is proposed to accurately describe the transistors. Based on the model, a novel predefined building block (PBB) library for LNA is created and symbolically analyzed by three-port network parameters and noise correlation matrix. Then, graph-grammar-based tree structure generation (GTSG) is applied to efficiently realize circuit topology generation. For circuit optimization, the rule-guided non-dominated sorting genetic algorithm (RG-NSGA-II) is applied to optimize the performances of generated circuit topologies. To validate, four typical examples of X-band LNA based on a 130-nm CMOS process are presented, and the results are verified using Spectre. This method can automatically generate 936 size-free circuit topologies, even a variety of inspiring topologies. Compared to traditional NSGA-II, the RG-NSGA-II shows enhanced optimization speed in four examples, with the mean absolute percentage error (MAPE) <5% to Spectre.
期刊介绍:
TCAS I publishes regular papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes: - Circuits: Analog, Digital and Mixed Signal Circuits and Systems - Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic - Circuits and Systems, Power Electronics and Systems - Software for Analog-and-Logic Circuits and Systems - Control aspects of Circuits and Systems.