{"title":"Polynomial Formal Verification of Multi-Valued Approximate Circuits Within Constant Cutwidth","authors":"Mohamed Nadeem;Chandan Kumar Jha;Rolf Drechsler","doi":"10.1109/TCSI.2025.3531008","DOIUrl":null,"url":null,"abstract":"Ensuring functional correctness is achieved through formal verification. As circuit complexity increases, limiting the upper bounds for time and space required for verification becomes crucial. Polynomial Formal Verification (PFV) has been introduced to tackle this problem. In modern digital system designs, approximate circuits are widely employed in error resilient applications. Therefore, ensuring the functional correctness of these circuits becomes essential. In prior works, it has been proven that approximate circuits with constant cutwidth can be verified in linear time. However, extending binary logic verification to Multi-Valued Logic (MVL) introduces challenges, particularly regarding the encoding of MVL operators. It has been shown that MVL circuits with constant cutwidth can be verified in linear time using Answer Set Programming (ASP), due to the ASP encoding capabilities of MVL operators. In this paper, we present a PFV approach of MVL approximate circuits with constant cutwidth using ASP. We then demonstrate that the verification of MVL approximate circuits with constant cutwidth can be achieved in linear time. Finally, we evaluate various MVL approximate circuits with constant cutwidth across different logic levels to show the efficacy of our approach.","PeriodicalId":13039,"journal":{"name":"IEEE Transactions on Circuits and Systems I: Regular Papers","volume":"72 3","pages":"1411-1424"},"PeriodicalIF":5.2000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems I: Regular Papers","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10858422/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Ensuring functional correctness is achieved through formal verification. As circuit complexity increases, limiting the upper bounds for time and space required for verification becomes crucial. Polynomial Formal Verification (PFV) has been introduced to tackle this problem. In modern digital system designs, approximate circuits are widely employed in error resilient applications. Therefore, ensuring the functional correctness of these circuits becomes essential. In prior works, it has been proven that approximate circuits with constant cutwidth can be verified in linear time. However, extending binary logic verification to Multi-Valued Logic (MVL) introduces challenges, particularly regarding the encoding of MVL operators. It has been shown that MVL circuits with constant cutwidth can be verified in linear time using Answer Set Programming (ASP), due to the ASP encoding capabilities of MVL operators. In this paper, we present a PFV approach of MVL approximate circuits with constant cutwidth using ASP. We then demonstrate that the verification of MVL approximate circuits with constant cutwidth can be achieved in linear time. Finally, we evaluate various MVL approximate circuits with constant cutwidth across different logic levels to show the efficacy of our approach.
期刊介绍:
TCAS I publishes regular papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes: - Circuits: Analog, Digital and Mixed Signal Circuits and Systems - Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic - Circuits and Systems, Power Electronics and Systems - Software for Analog-and-Logic Circuits and Systems - Control aspects of Circuits and Systems.