Quantum Dots Mediated Crystallization Enhancement in Two-Step Processed Perovskite Solar Cells

IF 26.6 1区 材料科学 Q1 Engineering Nano-Micro Letters Pub Date : 2025-02-27 DOI:10.1007/s40820-025-01677-5
Heng Liu, Geyu Jin, Jiantao Wang, Weihai Zhang, Long Qing, Yao Zhang, Qiongqiong Lu, Pengfei Yue, Guoshang Zhang, Jing Wei, Hongbo Li, Hsing-Lin Wang
{"title":"Quantum Dots Mediated Crystallization Enhancement in Two-Step Processed Perovskite Solar Cells","authors":"Heng Liu,&nbsp;Geyu Jin,&nbsp;Jiantao Wang,&nbsp;Weihai Zhang,&nbsp;Long Qing,&nbsp;Yao Zhang,&nbsp;Qiongqiong Lu,&nbsp;Pengfei Yue,&nbsp;Guoshang Zhang,&nbsp;Jing Wei,&nbsp;Hongbo Li,&nbsp;Hsing-Lin Wang","doi":"10.1007/s40820-025-01677-5","DOIUrl":null,"url":null,"abstract":"<div><h2>Highlights</h2><div>\n \n <ul>\n <li>\n <p>The incorporation of quantum dots (QDs) as crystallization seeds results in the growth of larger perovskite crystals with reduced defect densities and preferential orientations along the (001) and (002) planes, significantly improving the film morphology.</p>\n </li>\n <li>\n <p>The QD-seeded films exhibit reduced non-radiative recombination and enhanced charge transport, as confirmed by steady-state and time-resolved photoluminescence, transient photovoltage measurements, and electrochemical impedance spectroscopy.</p>\n </li>\n <li>\n <p>Devices fabricated with QD-treated films achieve a remarkable power conversion efficiency (PCE) of 24.75% and exhibit exceptional long-term stability under simulated sunlight exposure, retaining 80% of their PCE after 1000 h of continuous illumination.</p>\n </li>\n </ul>\n </div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-01677-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-025-01677-5","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Highlights

  • The incorporation of quantum dots (QDs) as crystallization seeds results in the growth of larger perovskite crystals with reduced defect densities and preferential orientations along the (001) and (002) planes, significantly improving the film morphology.

  • The QD-seeded films exhibit reduced non-radiative recombination and enhanced charge transport, as confirmed by steady-state and time-resolved photoluminescence, transient photovoltage measurements, and electrochemical impedance spectroscopy.

  • Devices fabricated with QD-treated films achieve a remarkable power conversion efficiency (PCE) of 24.75% and exhibit exceptional long-term stability under simulated sunlight exposure, retaining 80% of their PCE after 1000 h of continuous illumination.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
32.60
自引率
4.90%
发文量
981
审稿时长
1.1 months
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand. Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields. Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.
期刊最新文献
Quantum Dots Mediated Crystallization Enhancement in Two-Step Processed Perovskite Solar Cells Enhancing Thermal Protection in Lithium Batteries with Power Bank-Inspired Multi-Network Aerogel and Thermally Induced Flexible Composite Phase Change Material An Engineered Heterostructured Trinity Enables Fire-Safe, Thermally Conductive Polymer Nanocomposite Films with Low Dielectric Loss Yolk–Shell CoNi@N-Doped Carbon-CoNi@CNTs for Enhanced Microwave Absorption, Photothermal, Anti-Corrosion, and Antimicrobial Properties Durable Acidic Oxygen Evolution Via Self-Construction of Iridium Oxide/Iridium-Tantalum Oxide Bi-Layer Nanostructure with Dynamic Replenishment of Active Sites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1