Identification of Subtypes and Diagnostic Markers Related to Necroptosis in Sepsis.

IF 3.1 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Applied Biochemistry and Biotechnology Pub Date : 2025-02-26 DOI:10.1007/s12010-025-05201-8
Sen Peng, Ning Meng, Xia Xie, Bing Zhu, Bing Wang
{"title":"Identification of Subtypes and Diagnostic Markers Related to Necroptosis in Sepsis.","authors":"Sen Peng, Ning Meng, Xia Xie, Bing Zhu, Bing Wang","doi":"10.1007/s12010-025-05201-8","DOIUrl":null,"url":null,"abstract":"<p><p>Sepsis is a serious systemic infection with a high mortality rate. More and more evidence suggested that necroptosis plays a crucial role in the pathogenesis and progression of sepsis. This study aimed to elucidate the biological function and clinical significance of necroptosis in sepsis, and identify new potential biomarkers to improve the diagnosis and treatment of sepsis. Firstly, we identified 40 differentially expressed necroptosis related genes (DENRGs). Subsequently, a protein interaction (PPI) network of 40 DENRGs was constructed. Based on the key NRGs in the PPI network, the LASSO algorithm was used to screen eight diagnostic-related NRGs in sepsis, and a diagnostic model and risk score were constructed. The ROC analysis results indicated that the eight NRGs diagnostic model has good diagnostic performance (AUC = 0.955). There is a significant difference in risks core between normal samples and sepsis patients. The results of immune infiltration analysis showed that eight diagnostic-related NRGs were significantly correlated with multiple immune cells. Given the clinical significance of necroptosis in sepsis, we identified two molecular subtypes of sepsis based on eight NRGs. The necroptosis score of subtype 1 is significantly lower than that of subtype 2, while the immune score of subtype 1 is significantly higher than that of subtype 2. In summary, we developed and validated a diagnostic model and risk score based on eight NRGs, and identified two completely different subtypes associated with sepsis. Our research may provide new insights into the mechanisms of necroptosis in sepsis and the identification of potential biomarkers.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-025-05201-8","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Sepsis is a serious systemic infection with a high mortality rate. More and more evidence suggested that necroptosis plays a crucial role in the pathogenesis and progression of sepsis. This study aimed to elucidate the biological function and clinical significance of necroptosis in sepsis, and identify new potential biomarkers to improve the diagnosis and treatment of sepsis. Firstly, we identified 40 differentially expressed necroptosis related genes (DENRGs). Subsequently, a protein interaction (PPI) network of 40 DENRGs was constructed. Based on the key NRGs in the PPI network, the LASSO algorithm was used to screen eight diagnostic-related NRGs in sepsis, and a diagnostic model and risk score were constructed. The ROC analysis results indicated that the eight NRGs diagnostic model has good diagnostic performance (AUC = 0.955). There is a significant difference in risks core between normal samples and sepsis patients. The results of immune infiltration analysis showed that eight diagnostic-related NRGs were significantly correlated with multiple immune cells. Given the clinical significance of necroptosis in sepsis, we identified two molecular subtypes of sepsis based on eight NRGs. The necroptosis score of subtype 1 is significantly lower than that of subtype 2, while the immune score of subtype 1 is significantly higher than that of subtype 2. In summary, we developed and validated a diagnostic model and risk score based on eight NRGs, and identified two completely different subtypes associated with sepsis. Our research may provide new insights into the mechanisms of necroptosis in sepsis and the identification of potential biomarkers.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Biochemistry and Biotechnology
Applied Biochemistry and Biotechnology 工程技术-生化与分子生物学
CiteScore
5.70
自引率
6.70%
发文量
460
审稿时长
5.3 months
期刊介绍: This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities. In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.
期刊最新文献
Inhibition of ATP Citrate Lyase by Hydroxycitrate-Loaded Exosomes Suppresses the Survival of Lung Adenocarcinoma Cells. One-Pot Synthesis and Characterization of Naringenin-Capped Silver Nanoparticles with Enhanced Biological Activities. Identification of Subtypes and Diagnostic Markers Related to Necroptosis in Sepsis. Tanshinone IIA Suppresses the Proliferation of MGC803 Cells by Disrupting Glycolysis Under Anaerobic Conditions. An Integrative Approach Using Molecular and Metabolomic Studies Reveals the Connection of Glutamic Acid with Telomerase and Oxidative Stress in Berberine-Treated Colorectal Cancer Cell Line HCT 116.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1