Matheus Henrique Pimenta-Zanon, André Yoshiaki Kashiwabara, André Luís Laforga Vanzela, Fabricio Martins Lopes
{"title":"GRAMEP: an alignment-free method based on the maximum entropy principle for identifying SNPs.","authors":"Matheus Henrique Pimenta-Zanon, André Yoshiaki Kashiwabara, André Luís Laforga Vanzela, Fabricio Martins Lopes","doi":"10.1186/s12859-025-06037-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Advances in high throughput sequencing technologies provide a huge number of genomes to be analyzed. Thus, computational methods play a crucial role in analyzing and extracting knowledge from the data generated. Investigating genomic mutations is critical because of their impact on chromosomal evolution, genetic disorders, and diseases. It is common to adopt aligning sequences for analyzing genomic variations. However, this approach can be computationally expensive and restrictive in scenarios with large datasets.</p><p><strong>Results: </strong>We present a novel method for identifying single nucleotide polymorphisms (SNPs) in DNA sequences from assembled genomes. This study proposes GRAMEP, an alignment-free approach that adopts the principle of maximum entropy to discover the most informative k-mers specific to a genome or set of sequences under investigation. The informative k-mers enable the detection of variant-specific mutations in comparison to a reference genome or other set of sequences. In addition, our method offers the possibility of classifying novel sequences with no need for organism-specific information. GRAMEP demonstrated high accuracy in both in silico simulations and analyses of viral genomes, including Dengue, HIV, and SARS-CoV-2. Our approach maintained accurate SARS-CoV-2 variant identification while demonstrating a lower computational cost compared to methods with the same purpose.</p><p><strong>Conclusions: </strong>GRAMEP is an open and user-friendly software based on maximum entropy that provides an efficient alignment-free approach to identifying and classifying unique genomic subsequences and SNPs with high accuracy, offering advantages over comparative methods. The instructions for use, applicability, and usability of GRAMEP are open access at https://github.com/omatheuspimenta/GRAMEP .</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"66"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-025-06037-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Advances in high throughput sequencing technologies provide a huge number of genomes to be analyzed. Thus, computational methods play a crucial role in analyzing and extracting knowledge from the data generated. Investigating genomic mutations is critical because of their impact on chromosomal evolution, genetic disorders, and diseases. It is common to adopt aligning sequences for analyzing genomic variations. However, this approach can be computationally expensive and restrictive in scenarios with large datasets.
Results: We present a novel method for identifying single nucleotide polymorphisms (SNPs) in DNA sequences from assembled genomes. This study proposes GRAMEP, an alignment-free approach that adopts the principle of maximum entropy to discover the most informative k-mers specific to a genome or set of sequences under investigation. The informative k-mers enable the detection of variant-specific mutations in comparison to a reference genome or other set of sequences. In addition, our method offers the possibility of classifying novel sequences with no need for organism-specific information. GRAMEP demonstrated high accuracy in both in silico simulations and analyses of viral genomes, including Dengue, HIV, and SARS-CoV-2. Our approach maintained accurate SARS-CoV-2 variant identification while demonstrating a lower computational cost compared to methods with the same purpose.
Conclusions: GRAMEP is an open and user-friendly software based on maximum entropy that provides an efficient alignment-free approach to identifying and classifying unique genomic subsequences and SNPs with high accuracy, offering advantages over comparative methods. The instructions for use, applicability, and usability of GRAMEP are open access at https://github.com/omatheuspimenta/GRAMEP .
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.