Diagnostic ultrasound enhances, then reduces, exogenously induced brain activity of mice.

IF 2.4 3区 医学 Q3 NEUROSCIENCES Frontiers in Human Neuroscience Pub Date : 2025-02-11 eCollection Date: 2024-01-01 DOI:10.3389/fnhum.2024.1509432
Henry Tan, Devon J Griggs, Lucas Chen, Kahte Adele Culevski, Kathryn Floerchinger, Alissa Phutirat, Gabe Koh, Nels Schimek, Pierre D Mourad
{"title":"Diagnostic ultrasound enhances, then reduces, exogenously induced brain activity of mice.","authors":"Henry Tan, Devon J Griggs, Lucas Chen, Kahte Adele Culevski, Kathryn Floerchinger, Alissa Phutirat, Gabe Koh, Nels Schimek, Pierre D Mourad","doi":"10.3389/fnhum.2024.1509432","DOIUrl":null,"url":null,"abstract":"<p><p>Transcranially delivered diagnostic ultrasound (tDUS) applied to the human brain can modulate those brains such that they became more receptive to external stimulation relative to sham ultrasound exposure. Here, we sought to directly measure the effect of tDUS on mouse brain activity subjected to an external stimulation-a blinking light. Using electrocorticography, we observed a substantial increase in median brain activity due to tDUS plus a blinking light relative to baseline and relative to sham tDUS plus a blinking light. Subsequent brain activity decreased after cessation of tDUS but with continuation of the blinking light, though it remained above that demonstrated by mice exposed to only a blinking light. In a separate experiment, we showed that tDUS alone, without a blinking light, had no observable effect on median brain activity, but upon its cessation, brain activity decreased. These results demonstrate that <i>simultaneous</i> exposure to tDUS and blinking light can increase the receptivity of the visual cortex of mice exposed to that light, and that <i>prior</i> exposure to tDUS can reduce subsequent brain activity. In each case, these results are consistent with published data. Our results on mice echo published human results but do not directly explain them, since their test subjects received less intense diagnostic ultrasound than did our mice. Given the near ubiquity of diagnostic ultrasound systems, further progress along this line of research could one day lead to the widespread use of <i>diagnostic</i> ultrasound to intentionally modulate human brain function during exogenous stimulation.</p>","PeriodicalId":12536,"journal":{"name":"Frontiers in Human Neuroscience","volume":"18 ","pages":"1509432"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11850526/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Human Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnhum.2024.1509432","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Transcranially delivered diagnostic ultrasound (tDUS) applied to the human brain can modulate those brains such that they became more receptive to external stimulation relative to sham ultrasound exposure. Here, we sought to directly measure the effect of tDUS on mouse brain activity subjected to an external stimulation-a blinking light. Using electrocorticography, we observed a substantial increase in median brain activity due to tDUS plus a blinking light relative to baseline and relative to sham tDUS plus a blinking light. Subsequent brain activity decreased after cessation of tDUS but with continuation of the blinking light, though it remained above that demonstrated by mice exposed to only a blinking light. In a separate experiment, we showed that tDUS alone, without a blinking light, had no observable effect on median brain activity, but upon its cessation, brain activity decreased. These results demonstrate that simultaneous exposure to tDUS and blinking light can increase the receptivity of the visual cortex of mice exposed to that light, and that prior exposure to tDUS can reduce subsequent brain activity. In each case, these results are consistent with published data. Our results on mice echo published human results but do not directly explain them, since their test subjects received less intense diagnostic ultrasound than did our mice. Given the near ubiquity of diagnostic ultrasound systems, further progress along this line of research could one day lead to the widespread use of diagnostic ultrasound to intentionally modulate human brain function during exogenous stimulation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Human Neuroscience
Frontiers in Human Neuroscience 医学-神经科学
CiteScore
4.70
自引率
6.90%
发文量
830
审稿时长
2-4 weeks
期刊介绍: Frontiers in Human Neuroscience is a first-tier electronic journal devoted to understanding the brain mechanisms supporting cognitive and social behavior in humans, and how these mechanisms might be altered in disease states. The last 25 years have seen an explosive growth in both the methods and the theoretical constructs available to study the human brain. Advances in electrophysiological, neuroimaging, neuropsychological, psychophysical, neuropharmacological and computational approaches have provided key insights into the mechanisms of a broad range of human behaviors in both health and disease. Work in human neuroscience ranges from the cognitive domain, including areas such as memory, attention, language and perception to the social domain, with this last subject addressing topics, such as interpersonal interactions, social discourse and emotional regulation. How these processes unfold during development, mature in adulthood and often decline in aging, and how they are altered in a host of developmental, neurological and psychiatric disorders, has become increasingly amenable to human neuroscience research approaches. Work in human neuroscience has influenced many areas of inquiry ranging from social and cognitive psychology to economics, law and public policy. Accordingly, our journal will provide a forum for human research spanning all areas of human cognitive, social, developmental and translational neuroscience using any research approach.
期刊最新文献
Editorial: Neural and behavioral mechanisms of social learning. Brain plasticity associated with prolonged shooting training: a multimodal neuroimaging investigation from a cross-sectional study. Editorial: Women in cognitive neuroscience: 2023. Diagnostic ultrasound enhances, then reduces, exogenously induced brain activity of mice. A novel paradigm for fast training data generation in asynchronous movement-based BCIs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1