Triangular Causality Among Pulmonary Hypertension, Sleep Disorders, and Brain Structure at the Genetic Level: A Mendelian Randomization Study Focused on the Lung-Brain Axis.

IF 3 2区 医学 Q2 CLINICAL NEUROLOGY Nature and Science of Sleep Pub Date : 2025-02-21 eCollection Date: 2025-01-01 DOI:10.2147/NSS.S495071
Chenwei Zhang, Xuesen Su, Yukai Zhang, Peiyun He, Xiaomei Kong, Zhenxia Zhang, Yangyang Wei, Yiwei Shi
{"title":"Triangular Causality Among Pulmonary Hypertension, Sleep Disorders, and Brain Structure at the Genetic Level: A Mendelian Randomization Study Focused on the Lung-Brain Axis.","authors":"Chenwei Zhang, Xuesen Su, Yukai Zhang, Peiyun He, Xiaomei Kong, Zhenxia Zhang, Yangyang Wei, Yiwei Shi","doi":"10.2147/NSS.S495071","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The bidirectional relationship between pulmonary hypertension (PH) and sleep disorders has attracted significant research attention. The concept of the lung-brain axis has further highlighted the need for a holistic approach to managing these diseases.</p><p><strong>Methods: </strong>This study used bidirectional two-sample Mendelian Randomization (MR) to explore the genetic-level causal relationships between PH, sleep disorders, and structural brain changes. GWAS data for PH were pooled from four cohorts; data on four sleep disorder subtypes were sourced from the FinnGen database; and data on 15 structural brain changes were obtained from the ENIGMA Consortium. To ensure reliability, we applied strict data selection, multiple corrections, heterogeneity assessments, and sensitivity tests. Visualizations included forest plots, scatter plots, funnel plots, and leave-one-out plots.</p><p><strong>Results: </strong>MR analysis revealed a significant causal relationship between PH and both obstructive sleep apnea (OSA) (OR = 1.022, 95% CI = 1.006-1.039, P = 0.006, PBonferroni = 0.025) and general sleep disorders (OR = 1.018, 95% CI = 1.003-1.033, P = 0.018, PFDR = 0.036), with no evidence of reverse causation and multivariable MR analyses also demonstrated significant results. PH was linked to changes in total brain volume (P = 0.032) and cerebral white matter (P = 0.035). Amygdala changes appeared to reduce the risk of sleep disorders (P = 0.008) and OSA (P = 0.014). Sensitivity analyses showed no heterogeneity, pleiotropy, or significant outliers.</p><p><strong>Conclusion: </strong>This study identifies significant causal links between PH, sleep disorders, and structural brain changes, establishing a triangular cyclic relationship that supports the lung-brain axis concept. These findings inform clinical management of PH and its comorbidities.</p>","PeriodicalId":18896,"journal":{"name":"Nature and Science of Sleep","volume":"17 ","pages":"343-356"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853869/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature and Science of Sleep","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/NSS.S495071","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The bidirectional relationship between pulmonary hypertension (PH) and sleep disorders has attracted significant research attention. The concept of the lung-brain axis has further highlighted the need for a holistic approach to managing these diseases.

Methods: This study used bidirectional two-sample Mendelian Randomization (MR) to explore the genetic-level causal relationships between PH, sleep disorders, and structural brain changes. GWAS data for PH were pooled from four cohorts; data on four sleep disorder subtypes were sourced from the FinnGen database; and data on 15 structural brain changes were obtained from the ENIGMA Consortium. To ensure reliability, we applied strict data selection, multiple corrections, heterogeneity assessments, and sensitivity tests. Visualizations included forest plots, scatter plots, funnel plots, and leave-one-out plots.

Results: MR analysis revealed a significant causal relationship between PH and both obstructive sleep apnea (OSA) (OR = 1.022, 95% CI = 1.006-1.039, P = 0.006, PBonferroni = 0.025) and general sleep disorders (OR = 1.018, 95% CI = 1.003-1.033, P = 0.018, PFDR = 0.036), with no evidence of reverse causation and multivariable MR analyses also demonstrated significant results. PH was linked to changes in total brain volume (P = 0.032) and cerebral white matter (P = 0.035). Amygdala changes appeared to reduce the risk of sleep disorders (P = 0.008) and OSA (P = 0.014). Sensitivity analyses showed no heterogeneity, pleiotropy, or significant outliers.

Conclusion: This study identifies significant causal links between PH, sleep disorders, and structural brain changes, establishing a triangular cyclic relationship that supports the lung-brain axis concept. These findings inform clinical management of PH and its comorbidities.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature and Science of Sleep
Nature and Science of Sleep Neuroscience-Behavioral Neuroscience
CiteScore
5.70
自引率
5.90%
发文量
245
审稿时长
16 weeks
期刊介绍: Nature and Science of Sleep is an international, peer-reviewed, open access journal covering all aspects of sleep science and sleep medicine, including the neurophysiology and functions of sleep, the genetics of sleep, sleep and society, biological rhythms, dreaming, sleep disorders and therapy, and strategies to optimize healthy sleep. Specific topics covered in the journal include: The functions of sleep in humans and other animals Physiological and neurophysiological changes with sleep The genetics of sleep and sleep differences The neurotransmitters, receptors and pathways involved in controlling both sleep and wakefulness Behavioral and pharmacological interventions aimed at improving sleep, and improving wakefulness Sleep changes with development and with age Sleep and reproduction (e.g., changes across the menstrual cycle, with pregnancy and menopause) The science and nature of dreams Sleep disorders Impact of sleep and sleep disorders on health, daytime function and quality of life Sleep problems secondary to clinical disorders Interaction of society with sleep (e.g., consequences of shift work, occupational health, public health) The microbiome and sleep Chronotherapy Impact of circadian rhythms on sleep, physiology, cognition and health Mechanisms controlling circadian rhythms, centrally and peripherally Impact of circadian rhythm disruptions (including night shift work, jet lag and social jet lag) on sleep, physiology, cognition and health Behavioral and pharmacological interventions aimed at reducing adverse effects of circadian-related sleep disruption Assessment of technologies and biomarkers for measuring sleep and/or circadian rhythms Epigenetic markers of sleep or circadian disruption.
期刊最新文献
Sleep Duration, Sleep Habits, and Social Jetlag From 4 to 6 years Their Impacts on Myopia Among School-Aged Children: The Ma'anshan Birth Cohort Study. Management of CPAP Follow-up by Telemonitoring in Obstructive Sleep Apnea: The PROTEUS Project. Triangular Causality Among Pulmonary Hypertension, Sleep Disorders, and Brain Structure at the Genetic Level: A Mendelian Randomization Study Focused on the Lung-Brain Axis. A Comparative Investigation on Clinical Characteristics in Pediatric Obstructive Sleep Apnea Based on Two Distinct Guidelines. The Role of Mature Brain-Derived Neurotrophic Factor and Its Precursor in Predicting Early-Onset Insomnia in Stroke Patients Experiencing Early Neurological Deterioration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1