Zhenhua Jia, Lilin Xiang, Zhangyi Yu, Lenan Wang, Junyan Fang, Mengxin Liu, Xin Wu, Zhibing Lu, Li Wang
{"title":"Enhanced fatty acid oxidation via SCD1 downregulation fuels cardiac reprogramming.","authors":"Zhenhua Jia, Lilin Xiang, Zhangyi Yu, Lenan Wang, Junyan Fang, Mengxin Liu, Xin Wu, Zhibing Lu, Li Wang","doi":"10.1016/j.ymthe.2025.02.034","DOIUrl":null,"url":null,"abstract":"<p><p>Direct cardiac reprogramming has emerged as a promising therapeutic strategy to remuscularize injured myocardium. This approach converts non-contractile fibroblasts to induced cardiomyocytes (iCMs) that spontaneously contract, yet the intrinsic metabolic requirements driving cardiac reprogramming are not fully understood. Using single-cell metabolic flux estimation and flux balance analysis, we characterized the metabolic heterogeneity of iCMs and identified fatty acid oxidation (FAO) as a critical factor in iCM conversion. Both pharmacological and genetic inhibition of FAO impairs iCM generation. We further identified stearoyl-coenzyme A desaturase 1 (SCD1) as a metabolic switch that suppresses iCM reprogramming. Mechanistically, Scd1 knockdown activates PGC1α and PPARβ signaling, enhancing FAO-related gene expression and mitochondrial biogenesis, thereby improving reprogramming efficacy. Pharmacological manipulations targeting SCD1, PGC1α, and the PPARβ signaling axis further improved iCM generation and mitochondrial function. Our findings collectively highlight FAO as a key determinant of iCM fate and offer new therapeutic avenues for advancing reprogramming strategies.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2025.02.034","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Direct cardiac reprogramming has emerged as a promising therapeutic strategy to remuscularize injured myocardium. This approach converts non-contractile fibroblasts to induced cardiomyocytes (iCMs) that spontaneously contract, yet the intrinsic metabolic requirements driving cardiac reprogramming are not fully understood. Using single-cell metabolic flux estimation and flux balance analysis, we characterized the metabolic heterogeneity of iCMs and identified fatty acid oxidation (FAO) as a critical factor in iCM conversion. Both pharmacological and genetic inhibition of FAO impairs iCM generation. We further identified stearoyl-coenzyme A desaturase 1 (SCD1) as a metabolic switch that suppresses iCM reprogramming. Mechanistically, Scd1 knockdown activates PGC1α and PPARβ signaling, enhancing FAO-related gene expression and mitochondrial biogenesis, thereby improving reprogramming efficacy. Pharmacological manipulations targeting SCD1, PGC1α, and the PPARβ signaling axis further improved iCM generation and mitochondrial function. Our findings collectively highlight FAO as a key determinant of iCM fate and offer new therapeutic avenues for advancing reprogramming strategies.
期刊介绍:
Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.