Assessment of the Influence of Antisolvent 3D Printing Conditions on the Mechanical and Biological Properties of Poly(lactic-co-glycolic) Acid Scaffolds.

IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE Polymers Pub Date : 2025-02-14 DOI:10.3390/polym17040501
Anton V Mironov, Ekaterina M Trifanova, Tatyana B Bukharova, Andrey V Vasilyev, Viktoria O Chernomyrdina, Irina A Nedorubova, Valeriya S Kuznetsova, Andrey G Dunaev, Vladimir K Popov, Anatoly A Kulakov, Fedor F Losev, Dmitry V Goldshtein
{"title":"Assessment of the Influence of Antisolvent 3D Printing Conditions on the Mechanical and Biological Properties of Poly(lactic-co-glycolic) Acid Scaffolds.","authors":"Anton V Mironov, Ekaterina M Trifanova, Tatyana B Bukharova, Andrey V Vasilyev, Viktoria O Chernomyrdina, Irina A Nedorubova, Valeriya S Kuznetsova, Andrey G Dunaev, Vladimir K Popov, Anatoly A Kulakov, Fedor F Losev, Dmitry V Goldshtein","doi":"10.3390/polym17040501","DOIUrl":null,"url":null,"abstract":"<p><p>This paper describes an evaluation of the mechanical and biological properties of highly porous, biocompatible poly(lactic-co-glycolic acid) (PLGA) scaffolds produced using the antisolvent 3D printing technique under various forming conditions. The dependence of the scaffolds' microstructure, PLGA molecular weight distribution, and cell adhesion properties on temperature and injection nozzle diameter was evaluated. All samples consisted of fibers with different inner polymer distributions formed by specific radial, highly porous structures with a mean pore length of less than 50 μm and a diameter below 10 μm. The microstructure formed using a nozzle with a diameter of 160 μm showed a moderate correlation with printing temperature, while for the 330 μm nozzle, there was no significant difference in microstructures formed at different temperatures. Scaffolds produced at lower temperatures of 4 °C with a thin nozzle showed better compression load characteristics in terms of strength. In contrast, a larger nozzle allowed the production of a PLGA structure with improved elasticity. A 10-17% change in the molecular weight of PLGA was observed during printing, but no influence on biological properties was found. All types of PLGA scaffolds tested demonstrated good biocompatibility and promoted cell adhesion compared to the control.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 4","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11859950/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17040501","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper describes an evaluation of the mechanical and biological properties of highly porous, biocompatible poly(lactic-co-glycolic acid) (PLGA) scaffolds produced using the antisolvent 3D printing technique under various forming conditions. The dependence of the scaffolds' microstructure, PLGA molecular weight distribution, and cell adhesion properties on temperature and injection nozzle diameter was evaluated. All samples consisted of fibers with different inner polymer distributions formed by specific radial, highly porous structures with a mean pore length of less than 50 μm and a diameter below 10 μm. The microstructure formed using a nozzle with a diameter of 160 μm showed a moderate correlation with printing temperature, while for the 330 μm nozzle, there was no significant difference in microstructures formed at different temperatures. Scaffolds produced at lower temperatures of 4 °C with a thin nozzle showed better compression load characteristics in terms of strength. In contrast, a larger nozzle allowed the production of a PLGA structure with improved elasticity. A 10-17% change in the molecular weight of PLGA was observed during printing, but no influence on biological properties was found. All types of PLGA scaffolds tested demonstrated good biocompatibility and promoted cell adhesion compared to the control.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
期刊最新文献
Anion-Exchange Strategy for Ru/RuO2-Embedded N/S-Co-Doped Porous Carbon Composites for Electrochemical Nitrogen Fixation. Carbon Molecular Sieve Membranes from Acenaphthenequinone-Biphenyl Polymer; Synthesis, Characterization, and Effect on Gas Separation and Transport Properties. Background of New Measurement Electronic Devices with Polyelectrolyte Hydrogel Base. Changes in Heat Resistance and Mechanical Properties of Peroxide Cross-Linking HDPE: Effects of Compounding Cross-Linkers. The Structural Design of a New Graftable Antioxidant and the Theoretical Study of Its Role in the Cross-Linking Reaction Process of Polyethylene.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1