Optical Behavior of Clear Thermoplastic Dental Materials in a Simulated Oral Environment.

IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE Polymers Pub Date : 2025-02-11 DOI:10.3390/polym17040472
Liliana Porojan, Flavia Roxana Bejan, Roxana Diana Vasiliu, Anamaria Matichescu
{"title":"Optical Behavior of Clear Thermoplastic Dental Materials in a Simulated Oral Environment.","authors":"Liliana Porojan, Flavia Roxana Bejan, Roxana Diana Vasiliu, Anamaria Matichescu","doi":"10.3390/polym17040472","DOIUrl":null,"url":null,"abstract":"<p><p>(1) Background: The intra-oral behavior of clear thermoplastic dental materials can be influenced by various intrinsic and extrinsic factors. Aim: The purpose of this in vitro study was to evaluate the optical properties, color changes and whiteness variations of four thermoplastic polymers used for dental appliances, in a simulated oral environment. (2) Methods: Customized thermoformed specimens of four PETG thermoplastics were selected and investigated in this study: Leone [L], Duran [D], Erkodur [E] and Crystal [C]. The thermoplastic samples were divided into three groups related to pH values (neutral, acidic and basic). A period of 14 days was simulated. Five stages resulted: I. dessicated specimens; II. hydrated in artificial saliva; III. subsequent desiccated; IV. artificial aged; V. further dessicated. Optical CIE L*a*b* coordinates were determined and optical properties, like TP (translucency), OP (opalescence) values, color differences ΔE-NBS, white indexes in dentistry WI<sub>D</sub> and white index differences ΔWI<sub>D</sub> were calculated for all stages of the study, for each group of the materials. Statistical analyses were performed. (3) Results: Optical properties of PETG clear thermoplastic materials, like TP and OP, increase in a simulated oral environment and the changes become significant after artificial aging. Related to pH values, the optical behavior between the materials is significantly different. During artificial aging, the tested materials behave significantly differently in terms of optical properties. (4) Conclusions: After the simulated period of 14 days, TP and OP values increase, with a migration of the color towards red and yellow. Color changes in some cases even reach the level of extremely marked. Whiteness increases, and the differences are mostly perceptible, but partially exceed the limit of acceptability.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 4","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11859618/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17040472","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

(1) Background: The intra-oral behavior of clear thermoplastic dental materials can be influenced by various intrinsic and extrinsic factors. Aim: The purpose of this in vitro study was to evaluate the optical properties, color changes and whiteness variations of four thermoplastic polymers used for dental appliances, in a simulated oral environment. (2) Methods: Customized thermoformed specimens of four PETG thermoplastics were selected and investigated in this study: Leone [L], Duran [D], Erkodur [E] and Crystal [C]. The thermoplastic samples were divided into three groups related to pH values (neutral, acidic and basic). A period of 14 days was simulated. Five stages resulted: I. dessicated specimens; II. hydrated in artificial saliva; III. subsequent desiccated; IV. artificial aged; V. further dessicated. Optical CIE L*a*b* coordinates were determined and optical properties, like TP (translucency), OP (opalescence) values, color differences ΔE-NBS, white indexes in dentistry WID and white index differences ΔWID were calculated for all stages of the study, for each group of the materials. Statistical analyses were performed. (3) Results: Optical properties of PETG clear thermoplastic materials, like TP and OP, increase in a simulated oral environment and the changes become significant after artificial aging. Related to pH values, the optical behavior between the materials is significantly different. During artificial aging, the tested materials behave significantly differently in terms of optical properties. (4) Conclusions: After the simulated period of 14 days, TP and OP values increase, with a migration of the color towards red and yellow. Color changes in some cases even reach the level of extremely marked. Whiteness increases, and the differences are mostly perceptible, but partially exceed the limit of acceptability.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
期刊最新文献
Anion-Exchange Strategy for Ru/RuO2-Embedded N/S-Co-Doped Porous Carbon Composites for Electrochemical Nitrogen Fixation. Carbon Molecular Sieve Membranes from Acenaphthenequinone-Biphenyl Polymer; Synthesis, Characterization, and Effect on Gas Separation and Transport Properties. Background of New Measurement Electronic Devices with Polyelectrolyte Hydrogel Base. Changes in Heat Resistance and Mechanical Properties of Peroxide Cross-Linking HDPE: Effects of Compounding Cross-Linkers. The Structural Design of a New Graftable Antioxidant and the Theoretical Study of Its Role in the Cross-Linking Reaction Process of Polyethylene.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1