{"title":"Study on an Injectable Chitosan-Lignin/Poloxamer Hydrogel Loaded with Platelet-Rich Plasma for Intrauterine Adhesion Treatment.","authors":"Zhipeng Yu, Yang Min, Qi Ouyang, Yuting Fu, Ying Mao, Shuanglin Xiang, Xiang Hu, Liuyun Jiang","doi":"10.3390/polym17040474","DOIUrl":null,"url":null,"abstract":"<p><p>It is a great challenge to obtain an ideal hydrogel for the clinical treatment of intrauterine adhesion (IUA) disease. Here, a novel injectable chitosan-lignin/poloxamer hydrogel loaded with platelet-rich plasma (CL-PF127@PRP) was prepared by self-assembly at room temperature. Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), rheological analysis, and injectable writing were used to characterize the structure of the hydrogel. The results confirmed that the amino group of chitosan and the sulfonic group of sodium lignosulfonate were ionic-crosslinked by electrostatic attraction, which stabilized the three-dimensional structure of the PF127 hydrogel loaded with PRP, and PRP made the porous structure gradually become tight. Moreover, the CL-PF127@PRP hydrogel displayed good injectability and a solid state. The soaking experiment showed that the CL-PF127@PRP hydrogel had suitable degradation at pH = 7 and a good PRP release rate (PRP release 70% at 96 h). Cell experiments in vitro demonstrated that the CL-PF127@PRP hydrogel possessed good biocompatibility, an anti-inflammatory function, and pro-angiogenic activity. Furthermore, an animal experiment of skin wound and IUA confirmed that the skin wound closure rate of the CL-PF127@PRP hydrogel was over 50% on the seventh day. PRP improved the thickness of the endometrium and uterus receptivity, suggesting that the CL-PF127@PRP hydrogel offers great promise for the clinical treatment of IUA.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 4","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11858913/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17040474","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
It is a great challenge to obtain an ideal hydrogel for the clinical treatment of intrauterine adhesion (IUA) disease. Here, a novel injectable chitosan-lignin/poloxamer hydrogel loaded with platelet-rich plasma (CL-PF127@PRP) was prepared by self-assembly at room temperature. Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), rheological analysis, and injectable writing were used to characterize the structure of the hydrogel. The results confirmed that the amino group of chitosan and the sulfonic group of sodium lignosulfonate were ionic-crosslinked by electrostatic attraction, which stabilized the three-dimensional structure of the PF127 hydrogel loaded with PRP, and PRP made the porous structure gradually become tight. Moreover, the CL-PF127@PRP hydrogel displayed good injectability and a solid state. The soaking experiment showed that the CL-PF127@PRP hydrogel had suitable degradation at pH = 7 and a good PRP release rate (PRP release 70% at 96 h). Cell experiments in vitro demonstrated that the CL-PF127@PRP hydrogel possessed good biocompatibility, an anti-inflammatory function, and pro-angiogenic activity. Furthermore, an animal experiment of skin wound and IUA confirmed that the skin wound closure rate of the CL-PF127@PRP hydrogel was over 50% on the seventh day. PRP improved the thickness of the endometrium and uterus receptivity, suggesting that the CL-PF127@PRP hydrogel offers great promise for the clinical treatment of IUA.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.