Mohamed Boutaayamou, Doriane Pelzer, Cédric Schwartz, Sophie Gillain, Gaëtan Garraux, Jean-Louis Croisier, Jacques G Verly, Olivier Brüls
{"title":"Toward Convenient and Accurate IMU-Based Gait Analysis.","authors":"Mohamed Boutaayamou, Doriane Pelzer, Cédric Schwartz, Sophie Gillain, Gaëtan Garraux, Jean-Louis Croisier, Jacques G Verly, Olivier Brüls","doi":"10.3390/s25041267","DOIUrl":null,"url":null,"abstract":"<p><p>While inertial measurement unit (IMU)-based systems have shown their potential in quantifying medically significant gait parameters, it remains to be determined whether they can provide accurate and reliable parameters both across various walking conditions and in healthcare settings. Using an IMU-based system we previously developed, with one IMU module on each subject's heel, we quantify the gait parameters of 55 men and 46 women, all healthy and aged 40-65, in normal, dual-task, and fast walking conditions. We evaluate their intra-session reliability, and we establish a new reference database of such parameters showing good to excellent reliability. ICC(2,1) assesses relative reliability, while SEM% and MDC% assess absolute reliability. The reliability is excellent for all spatiotemporal gait parameters and the stride length (SL) symmetry ratio (ICC ≥ 0.90, SEM% ≤ 4.5%, MDC% ≤ 12.4%) across all conditions. It is good to excellent for the fast walking performance (FWP) indices of stride (Sr), stance (Sa), double-support (DS), and step (St) times; gait speed (GS); and the GS normalized to leg length (GS<sub>n1</sub>) and body height (GS<sub>n2</sub>) (ICC ≥ 0.91, |SEM%| ≤ 10.0%, |MDC%| ≤ 27.6%). Men have a higher swing time (Sw) and SL across all conditions. The following parameters are gender-independent: (1) Sa, DS, GS<sub>n1</sub>, GS<sub>n2</sub>; (2) the symmetry ratios of SL and GS, as well as Sa% and Sw% (representing Sa and Sw as percentages of Sr); and (3) the FWPs of Sr, Sa, Sw, DS, St, cadence, Sa% and Sw%. Our results provide reference values with new insights into gender FWP comparisons rarely reported in the literature. The advantages and reliability of our IMU-based system make it suitable in medical applications such as prosthetic evaluation, fall risk assessment, and rehabilitation.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 4","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11860383/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25041267","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
While inertial measurement unit (IMU)-based systems have shown their potential in quantifying medically significant gait parameters, it remains to be determined whether they can provide accurate and reliable parameters both across various walking conditions and in healthcare settings. Using an IMU-based system we previously developed, with one IMU module on each subject's heel, we quantify the gait parameters of 55 men and 46 women, all healthy and aged 40-65, in normal, dual-task, and fast walking conditions. We evaluate their intra-session reliability, and we establish a new reference database of such parameters showing good to excellent reliability. ICC(2,1) assesses relative reliability, while SEM% and MDC% assess absolute reliability. The reliability is excellent for all spatiotemporal gait parameters and the stride length (SL) symmetry ratio (ICC ≥ 0.90, SEM% ≤ 4.5%, MDC% ≤ 12.4%) across all conditions. It is good to excellent for the fast walking performance (FWP) indices of stride (Sr), stance (Sa), double-support (DS), and step (St) times; gait speed (GS); and the GS normalized to leg length (GSn1) and body height (GSn2) (ICC ≥ 0.91, |SEM%| ≤ 10.0%, |MDC%| ≤ 27.6%). Men have a higher swing time (Sw) and SL across all conditions. The following parameters are gender-independent: (1) Sa, DS, GSn1, GSn2; (2) the symmetry ratios of SL and GS, as well as Sa% and Sw% (representing Sa and Sw as percentages of Sr); and (3) the FWPs of Sr, Sa, Sw, DS, St, cadence, Sa% and Sw%. Our results provide reference values with new insights into gender FWP comparisons rarely reported in the literature. The advantages and reliability of our IMU-based system make it suitable in medical applications such as prosthetic evaluation, fall risk assessment, and rehabilitation.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.