{"title":"High-Efficiency Surface-Cooled Rapid Tooling Development for Injection Molding of Low-Density Polyethylene.","authors":"Chil-Chyuan Kuo, Pin-Han Lin, Jing-Yan Xu, Armaan Farooqui, Song-Hua Huang","doi":"10.3390/polym17040468","DOIUrl":null,"url":null,"abstract":"<p><p>Epoxy resin filled with aluminum particles constitutes a polymer composite material commonly utilized in research and development departments to fabricate rapid tooling for prototyping new designs. This study developed aluminum-filled epoxy resin molds by incorporating surface-cooled cooling channels (SCCCs) to enhance cooling performance, validated through Moldex3D simulation and experimental analysis. The simulation revealed that a 1 mm mesh size was utilized to balance accuracy and efficiency, with simulations revealing the complete filling of the injection-molded product within 5 s. This study examines rapid tooling with surface-cooled cooling channels in low-density polyethylene injection molding. The reliable parameters include a melt temperature of 160 °C, a mold temperature of 30 °C, an injection pressure of 10 MPa, and a heat dissipation time of 20 s. These parameters effectively minimize the risk of mold cracking while ensuring efficient molding. The SCCC demonstrates superior cooling performance, enhancing cooling efficiency by 58.7% compared to the conventional conformal cooling channel. It reduces cooling time, enhances production capacity, and shortens delivery times. Additionally, it lowers energy consumption, carbon emissions, and the rate of product defects in large-scale manufacturing. A cooling mechanism of SCCC after LDPE injection molding was also proposed.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 4","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11859249/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17040468","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Epoxy resin filled with aluminum particles constitutes a polymer composite material commonly utilized in research and development departments to fabricate rapid tooling for prototyping new designs. This study developed aluminum-filled epoxy resin molds by incorporating surface-cooled cooling channels (SCCCs) to enhance cooling performance, validated through Moldex3D simulation and experimental analysis. The simulation revealed that a 1 mm mesh size was utilized to balance accuracy and efficiency, with simulations revealing the complete filling of the injection-molded product within 5 s. This study examines rapid tooling with surface-cooled cooling channels in low-density polyethylene injection molding. The reliable parameters include a melt temperature of 160 °C, a mold temperature of 30 °C, an injection pressure of 10 MPa, and a heat dissipation time of 20 s. These parameters effectively minimize the risk of mold cracking while ensuring efficient molding. The SCCC demonstrates superior cooling performance, enhancing cooling efficiency by 58.7% compared to the conventional conformal cooling channel. It reduces cooling time, enhances production capacity, and shortens delivery times. Additionally, it lowers energy consumption, carbon emissions, and the rate of product defects in large-scale manufacturing. A cooling mechanism of SCCC after LDPE injection molding was also proposed.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.