Lei Han, Lingmei Wang, Enlong Meng, Yushan Liu, Shaoping Yin
{"title":"Flexible Optimal Control of the CFBB Combustion System Based on ESKF and MPC.","authors":"Lei Han, Lingmei Wang, Enlong Meng, Yushan Liu, Shaoping Yin","doi":"10.3390/s25041262","DOIUrl":null,"url":null,"abstract":"<p><p>In order to deeply absorb the power generation of new energy, coal-fired circulating fluidized bed units are widely required to participate in power grid dispatching. However, the combustion system of the units faces problems such as decreased control performance, strong coupling of controlled signals, and multiple interferences in measurement signals during flexible operation. To this end, this paper proposes a model predictive control (MPC) scheme based on the extended state Kalman filter (ESKF). This scheme optimizes the MPC control framework. The ESKF is used to filter the collected output signals and jointly estimate the state and disturbance quantities in real time, thus promptly establishing a prediction model that reflects the true state of the system. Subsequently, taking the minimum output signal deviation of the main steam pressure and bed temperature and the control signal increment as objectives, a coordinated receding horizon optimization is carried out to obtain the optimal control signal of the control system within each control cycle. Tracking, anti-interference, and robustness experiments were designed to compare the control effects of ESKF-MPC, ID-PI, ID-LADRC, and MPC. The research results show that, when the system parameters had a ±30% perturbation, the adjustment time range of the main steam pressure and bed temperature loops of this method were 770~1600 s and 460~1100 s, respectively, and the ITAE indicator ranges were 0.615 × 10<sup>5</sup>~1.74 × 10<sup>5</sup> and 3.9 × 10<sup>6</sup>~6.75 × 10<sup>6</sup>, respectively. The overall indicator values were smaller and more concentrated, and the robustness was stronger. In addition, the test results of the actual continuous variable condition process of the unit show that, compared with the PI strategy, after adopting the ESKF-MPC strategy, the overshoot of the main steam pressure loop of the combustion system was small, and the output signal was stable; the fluctuation range of the bed temperature loop was small, and the signal tracking was smooth; the overall control performance of the system was significantly improved.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 4","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11860888/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25041262","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In order to deeply absorb the power generation of new energy, coal-fired circulating fluidized bed units are widely required to participate in power grid dispatching. However, the combustion system of the units faces problems such as decreased control performance, strong coupling of controlled signals, and multiple interferences in measurement signals during flexible operation. To this end, this paper proposes a model predictive control (MPC) scheme based on the extended state Kalman filter (ESKF). This scheme optimizes the MPC control framework. The ESKF is used to filter the collected output signals and jointly estimate the state and disturbance quantities in real time, thus promptly establishing a prediction model that reflects the true state of the system. Subsequently, taking the minimum output signal deviation of the main steam pressure and bed temperature and the control signal increment as objectives, a coordinated receding horizon optimization is carried out to obtain the optimal control signal of the control system within each control cycle. Tracking, anti-interference, and robustness experiments were designed to compare the control effects of ESKF-MPC, ID-PI, ID-LADRC, and MPC. The research results show that, when the system parameters had a ±30% perturbation, the adjustment time range of the main steam pressure and bed temperature loops of this method were 770~1600 s and 460~1100 s, respectively, and the ITAE indicator ranges were 0.615 × 105~1.74 × 105 and 3.9 × 106~6.75 × 106, respectively. The overall indicator values were smaller and more concentrated, and the robustness was stronger. In addition, the test results of the actual continuous variable condition process of the unit show that, compared with the PI strategy, after adopting the ESKF-MPC strategy, the overshoot of the main steam pressure loop of the combustion system was small, and the output signal was stable; the fluctuation range of the bed temperature loop was small, and the signal tracking was smooth; the overall control performance of the system was significantly improved.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.