{"title":"Low-Profile Proximity-Coupled Cavity-Less Magneto-Electric Dipole Antenna.","authors":"Khalid Almegbel, Kin-Fai Tong","doi":"10.3390/s25041234","DOIUrl":null,"url":null,"abstract":"<p><p>Magneto-electric dipole (ME-dipole) antennas offer several advantages, including wide impedance bandwidth, stable high gain, unidirectional radiation, and low back-lobe radiation patterns, making them suitable for modern wireless communication systems. However, the thickness of conventional ME-dipole antennas is typically about a quarter wavelength (0.25λo) at the center operating frequency, which may not be desirable for portable device applications. This work introduces a new feeding method that reduces the antenna profile and ground plane size while maintaining the same advantages. A suspended horizontal line is proposed to excite the cavity-less ME-dipole antenna through proximity coupling. The measured results demonstrate a wide impedance bandwidth of 45.3% (ranging from 2.05 GHz to 3.25 GHz) and an average in-band gain of 9 dBi with stable ±1 dBi in-band variation with a ground reflector of size about 0.89λo2. More importantly, the cavity-less design reduces the overall thickness of the antenna to 0.17λo at the center operating frequency.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 4","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11860910/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25041234","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Magneto-electric dipole (ME-dipole) antennas offer several advantages, including wide impedance bandwidth, stable high gain, unidirectional radiation, and low back-lobe radiation patterns, making them suitable for modern wireless communication systems. However, the thickness of conventional ME-dipole antennas is typically about a quarter wavelength (0.25λo) at the center operating frequency, which may not be desirable for portable device applications. This work introduces a new feeding method that reduces the antenna profile and ground plane size while maintaining the same advantages. A suspended horizontal line is proposed to excite the cavity-less ME-dipole antenna through proximity coupling. The measured results demonstrate a wide impedance bandwidth of 45.3% (ranging from 2.05 GHz to 3.25 GHz) and an average in-band gain of 9 dBi with stable ±1 dBi in-band variation with a ground reflector of size about 0.89λo2. More importantly, the cavity-less design reduces the overall thickness of the antenna to 0.17λo at the center operating frequency.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.