Hong Gao, Tinglu Zhang, Ruiman Yuan, Lianbo Hu, Shuguo Chen
{"title":"Modeling and Performance Analysis of Uplink Laser Transmission Across Sea Surfaces: A Channel Characterization Study.","authors":"Hong Gao, Tinglu Zhang, Ruiman Yuan, Lianbo Hu, Shuguo Chen","doi":"10.3390/s25041239","DOIUrl":null,"url":null,"abstract":"<p><p>Variable marine environmental conditions, particularly at the sea surface, present considerable challenges to cross-media laser transmission. This study simulates uplink laser transmission through a seawater-sea surface-air channel via ray tracing and Monte Carlo methods, with an emphasis on the impacts of the sea surface channel. A spatial model of the sea surface is introduced, which uses a wave spectrum and fast Fourier transform technology, and the results are compared against those of a classical statistical model. The validity and applicability of six representative wind wave spectra are assessed for their effectiveness in characterizing the optical sea surface. Among these spectra, the Elfouhaily spectrum, which is refined for low-wind conditions, can most accurately represent the optical properties of the sea surface. The simulations reveal that the spatial model captures power fluctuations due to dynamic sea surface changes. At shorter underwater transmission distances, the spatial model may induce considerable drift, thereby degrading power estimates, where the difference is about 0.9 dB compared with the statistical model. Deeper underwater transmissions can mitigate beam distortions, resulting in a decrease in normalized peak power from -114 dB to -157 dB. Additionally, the laser centroid distribution tends to be elliptical because of the distribution of the sea surface azimuth. These findings underscore the importance of incorporating spatiotemporal dynamics in modeling sea surfaces and provide insights for optimizing underwater air laser transmission links in complex marine environments.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 4","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11861510/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25041239","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Variable marine environmental conditions, particularly at the sea surface, present considerable challenges to cross-media laser transmission. This study simulates uplink laser transmission through a seawater-sea surface-air channel via ray tracing and Monte Carlo methods, with an emphasis on the impacts of the sea surface channel. A spatial model of the sea surface is introduced, which uses a wave spectrum and fast Fourier transform technology, and the results are compared against those of a classical statistical model. The validity and applicability of six representative wind wave spectra are assessed for their effectiveness in characterizing the optical sea surface. Among these spectra, the Elfouhaily spectrum, which is refined for low-wind conditions, can most accurately represent the optical properties of the sea surface. The simulations reveal that the spatial model captures power fluctuations due to dynamic sea surface changes. At shorter underwater transmission distances, the spatial model may induce considerable drift, thereby degrading power estimates, where the difference is about 0.9 dB compared with the statistical model. Deeper underwater transmissions can mitigate beam distortions, resulting in a decrease in normalized peak power from -114 dB to -157 dB. Additionally, the laser centroid distribution tends to be elliptical because of the distribution of the sea surface azimuth. These findings underscore the importance of incorporating spatiotemporal dynamics in modeling sea surfaces and provide insights for optimizing underwater air laser transmission links in complex marine environments.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.