{"title":"Advances and Challenges in <i>Aeromonas hydrophila</i> Vaccine Development: Immunological Insights and Future Perspectives.","authors":"Kavi R Miryala, Banikalyan Swain","doi":"10.3390/vaccines13020202","DOIUrl":null,"url":null,"abstract":"<p><p><i>Aeromonas hydrophila</i> presents a significant threat to global aquaculture due to its ability to infect freshwater and marine fish species, leading to substantial economic losses. Effective mitigation methods are essential to address these challenges. Vaccination has emerged as a promising strategy to reduce <i>A. hydrophila</i> infections; however, it faces several obstacles, including variability in immune responses, pathogen diversity, and environmental factors affecting vaccine efficacy. To enhance vaccine performance, researchers focus on adjuvants to boost immune responses and develop multivalent vaccines targeting multiple <i>A. hydrophila</i> strains. Tailoring vaccines to specific environmental conditions and optimizing vaccination schedules can further address the challenges posed by pathogen diversity and variable immune responses. This review provides an in-depth analysis of the immunological hurdles associated with <i>A. hydrophila</i> vaccine development. Current vaccine types-live attenuated, inactivated, subunit, recombinant, and DNA-exhibit diverse mechanisms for stimulating innate and adaptive immunity, with varying levels of success. Key focus areas include the potential of advanced adjuvants and nanoparticle delivery systems to overcome existing barriers. The review also highlights the importance of understanding host-pathogen interactions in guiding the development of more targeted and effective immune responses in fish. Complementary approaches, such as immunostimulants, probiotics, and plant-based extracts, are explored as adjuncts to vaccination in aquaculture health management. Despite notable progress, challenges remain in translating laboratory innovations into scalable, cost-effective solutions for aquaculture. Future directions emphasize the integration of advanced genomic and proteomic tools to identify novel antigen candidates and the need for industry-wide collaborations to standardize vaccine production and delivery. Addressing these challenges can unlock the potential of innovative vaccine technologies to safeguard fish health and promote sustainable aquaculture practices globally.</p>","PeriodicalId":23634,"journal":{"name":"Vaccines","volume":"13 2","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11861604/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vaccines","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/vaccines13020202","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aeromonas hydrophila presents a significant threat to global aquaculture due to its ability to infect freshwater and marine fish species, leading to substantial economic losses. Effective mitigation methods are essential to address these challenges. Vaccination has emerged as a promising strategy to reduce A. hydrophila infections; however, it faces several obstacles, including variability in immune responses, pathogen diversity, and environmental factors affecting vaccine efficacy. To enhance vaccine performance, researchers focus on adjuvants to boost immune responses and develop multivalent vaccines targeting multiple A. hydrophila strains. Tailoring vaccines to specific environmental conditions and optimizing vaccination schedules can further address the challenges posed by pathogen diversity and variable immune responses. This review provides an in-depth analysis of the immunological hurdles associated with A. hydrophila vaccine development. Current vaccine types-live attenuated, inactivated, subunit, recombinant, and DNA-exhibit diverse mechanisms for stimulating innate and adaptive immunity, with varying levels of success. Key focus areas include the potential of advanced adjuvants and nanoparticle delivery systems to overcome existing barriers. The review also highlights the importance of understanding host-pathogen interactions in guiding the development of more targeted and effective immune responses in fish. Complementary approaches, such as immunostimulants, probiotics, and plant-based extracts, are explored as adjuncts to vaccination in aquaculture health management. Despite notable progress, challenges remain in translating laboratory innovations into scalable, cost-effective solutions for aquaculture. Future directions emphasize the integration of advanced genomic and proteomic tools to identify novel antigen candidates and the need for industry-wide collaborations to standardize vaccine production and delivery. Addressing these challenges can unlock the potential of innovative vaccine technologies to safeguard fish health and promote sustainable aquaculture practices globally.
VaccinesPharmacology, Toxicology and Pharmaceutics-Pharmacology
CiteScore
8.90
自引率
16.70%
发文量
1853
审稿时长
18.06 days
期刊介绍:
Vaccines (ISSN 2076-393X) is an international, peer-reviewed open access journal focused on laboratory and clinical vaccine research, utilization and immunization. Vaccines publishes high quality reviews, regular research papers, communications and case reports.