Amjad Al Taleb, Wen Wan, Giorgio Benedek, Miguel M. Ugeda, Daniel Farías
{"title":"Electron–Phonon Coupling and Phonon Dynamics in Single-Layer NbSe2 on Graphene: The Role of Moiré Phonons","authors":"Amjad Al Taleb, Wen Wan, Giorgio Benedek, Miguel M. Ugeda, Daniel Farías","doi":"10.1021/acsnano.4c16399","DOIUrl":null,"url":null,"abstract":"The interplay between substrate interactions and electron–phonon coupling in two-dimensional (2D) materials presents a significant challenge in understanding and controlling their electronic properties. Here, we present a comparative study of the structural characteristics, phonon dynamics, and electron–phonon interactions in bulk and monolayer NbSe<sub>2</sub> on epitaxial bilayer graphene (BLG) using helium atom scattering (HAS). High-resolution helium diffraction reveals a (9 × 9)0° superstructure within the NbSe<sub>2</sub> monolayer, commensurate with the BLG lattice, while out-of-plane HAS diffraction spectra indicate a low-corrugated (3√3 × 3√3)30° substructure. By monitoring the thermal attenuation of the specular peak across a temperature range of 100 to 300 K, we determined the electron–phonon coupling constant (λ<sub>HAS</sub>) as 0.76 for bulk 2H-NbSe<sub>2</sub>. In contrast, the NbSe<sub>2</sub> monolayer on graphene exhibits a reduced λ<sub>HAS</sub> of 0.55, corresponding to a superconducting critical temperature (<i>T</i><sub>C</sub>) of 1.56 K according to the MacMillan formula, consistent with transport measurement findings. Inelastic HAS data provide, besides a set of dispersion curves of acoustic and lower optical phonons, a soft, dispersionless branch of phonons at 1.7 meV, attributed to the interface localized defects distributed with the superstructure period, thus termed Moiré phonons. Our data show that Moiré phonons contribute significantly to the electron–phonon coupling in monolayer NbSe<sub>2</sub>. These results highlight the crucial role of the BLG in the electron–phonon coupling in monolayer NbSe<sub>2</sub>, attributed to enhanced charge transfer effects, providing valuable insights into substrate-dependent electronic interactions in 2D superconductors.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"28 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c16399","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The interplay between substrate interactions and electron–phonon coupling in two-dimensional (2D) materials presents a significant challenge in understanding and controlling their electronic properties. Here, we present a comparative study of the structural characteristics, phonon dynamics, and electron–phonon interactions in bulk and monolayer NbSe2 on epitaxial bilayer graphene (BLG) using helium atom scattering (HAS). High-resolution helium diffraction reveals a (9 × 9)0° superstructure within the NbSe2 monolayer, commensurate with the BLG lattice, while out-of-plane HAS diffraction spectra indicate a low-corrugated (3√3 × 3√3)30° substructure. By monitoring the thermal attenuation of the specular peak across a temperature range of 100 to 300 K, we determined the electron–phonon coupling constant (λHAS) as 0.76 for bulk 2H-NbSe2. In contrast, the NbSe2 monolayer on graphene exhibits a reduced λHAS of 0.55, corresponding to a superconducting critical temperature (TC) of 1.56 K according to the MacMillan formula, consistent with transport measurement findings. Inelastic HAS data provide, besides a set of dispersion curves of acoustic and lower optical phonons, a soft, dispersionless branch of phonons at 1.7 meV, attributed to the interface localized defects distributed with the superstructure period, thus termed Moiré phonons. Our data show that Moiré phonons contribute significantly to the electron–phonon coupling in monolayer NbSe2. These results highlight the crucial role of the BLG in the electron–phonon coupling in monolayer NbSe2, attributed to enhanced charge transfer effects, providing valuable insights into substrate-dependent electronic interactions in 2D superconductors.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.