Inhibiting Neutrophil Extracellular Trap Formation through Iron Regulation for Enhanced Cancer Immunotherapy

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2025-02-26 DOI:10.1021/acsnano.4c18555
Jinmin Ye, Yatong Qin, Hui Liu, Hehe Xiong, Heng Zhang, Huaxiang Shen, Fantian Zeng, Changrong Shi, Zijian Zhou
{"title":"Inhibiting Neutrophil Extracellular Trap Formation through Iron Regulation for Enhanced Cancer Immunotherapy","authors":"Jinmin Ye, Yatong Qin, Hui Liu, Hehe Xiong, Heng Zhang, Huaxiang Shen, Fantian Zeng, Changrong Shi, Zijian Zhou","doi":"10.1021/acsnano.4c18555","DOIUrl":null,"url":null,"abstract":"Iron metabolism of neutrophils plays a vital role in neutrophil extracellular trap (NET) formation, which presents as one of the major hurdles to the immune response in the tumor microenvironment. Here, we developed a peptide–drug conjugate (PDC)-based transformable iron nanochelator (TIN) equipped with the ability to regulate the iron metabolism of neutrophils, endowing inhibition of NET formation and the ensuing immunosuppression functions. The TIN could expose the iron-binding motifs through neutrophil elastase-mediated morphological transformation from nanoparticles to β-sheet nanofibers, which further evolve into stable α-helix nanofibers after chelation with iron(II) ions. This process enables a highly specific regulation of iron(II) ions of neutrophils, which turns into an efficient way of inhibiting NET formation and improving the immune response. Furthermore, the TIN showed an improved therapeutic effect in combination with protein arginine deiminase 4 inhibitors and synergistically boosted the anti-PD-L1 treatment. This study designates an iron-regulation strategy to inhibit NET formation, which provides an alternative approach to immune modulation from the perspective of targeting the iron metabolism of neutrophils in cancer immunotherapy.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"2 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c18555","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Iron metabolism of neutrophils plays a vital role in neutrophil extracellular trap (NET) formation, which presents as one of the major hurdles to the immune response in the tumor microenvironment. Here, we developed a peptide–drug conjugate (PDC)-based transformable iron nanochelator (TIN) equipped with the ability to regulate the iron metabolism of neutrophils, endowing inhibition of NET formation and the ensuing immunosuppression functions. The TIN could expose the iron-binding motifs through neutrophil elastase-mediated morphological transformation from nanoparticles to β-sheet nanofibers, which further evolve into stable α-helix nanofibers after chelation with iron(II) ions. This process enables a highly specific regulation of iron(II) ions of neutrophils, which turns into an efficient way of inhibiting NET formation and improving the immune response. Furthermore, the TIN showed an improved therapeutic effect in combination with protein arginine deiminase 4 inhibitors and synergistically boosted the anti-PD-L1 treatment. This study designates an iron-regulation strategy to inhibit NET formation, which provides an alternative approach to immune modulation from the perspective of targeting the iron metabolism of neutrophils in cancer immunotherapy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Bond Dissociation Dynamics of Single Molecules on a Metal Surface Reduced Thermal Conductivity in SnSe2 Moiré Superlattices Adaptive All-Fiber Actuator for Human–Environment Interaction Coordinated Ionic Self-Assembly of Highly Ordered Mesoporous Pt2Sn2S6 Networks for Boosted Hydrogen Evolution Direct Observation of Phase Change Accommodating Hydrogen Uptake in Bimetallic Nanoparticles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1