Prediction of individual treatment allocation between electroconvulsive therapy or ketamine using the Personalized Advantage Index

IF 12.4 1区 医学 Q1 HEALTH CARE SCIENCES & SERVICES NPJ Digital Medicine Pub Date : 2025-02-27 DOI:10.1038/s41746-025-01523-3
Benjamin S. C. Wade, Ryan Pindale, James Luccarelli, Shuang Li, Robert C. Meisner, Stephen J. Seiner, Joan A. Camprodon, Michael E. Henry
{"title":"Prediction of individual treatment allocation between electroconvulsive therapy or ketamine using the Personalized Advantage Index","authors":"Benjamin S. C. Wade, Ryan Pindale, James Luccarelli, Shuang Li, Robert C. Meisner, Stephen J. Seiner, Joan A. Camprodon, Michael E. Henry","doi":"10.1038/s41746-025-01523-3","DOIUrl":null,"url":null,"abstract":"<p>Electroconvulsive therapy (ECT) and ketamine are effective treatments for depression; however, evidence-based guidelines are needed to inform individual treatment selection. We adapted the Personalized Advantage Index (PAI) using machine learning to predict optimal treatment assignment to ECT or ketamine using EHR data on 2506 ECT and 196 ketamine patients. Depressive symptoms were evaluated using the Quick Inventory of Depressive Symptomatology (QIDS) before and during acute treatment. Propensity score matching across treatments was used to address confounding by indication, yielding a sample of 392 patients (<i>n</i> = 196 per treatment). Models predicted differential minimum QIDS scores (min-QIDS) over acute treatment using pretreatment EHR measures and SHAP values identified prescriptive predictors. Patients with large PAI scores who received a predicted optimal had significantly lower min-QIDS compared to the non-optimal treatment group (mean difference = 1.19 [95% CI: 0.32, ∞], <i>t</i> = 2.25, <i>q</i> &lt; 0.05, <i>d</i> = 0.26). Our model identified candidate pretreatment factors to provide actionable, effective antidepressant treatment selection guidelines.</p>","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"29 1","pages":""},"PeriodicalIF":12.4000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01523-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Electroconvulsive therapy (ECT) and ketamine are effective treatments for depression; however, evidence-based guidelines are needed to inform individual treatment selection. We adapted the Personalized Advantage Index (PAI) using machine learning to predict optimal treatment assignment to ECT or ketamine using EHR data on 2506 ECT and 196 ketamine patients. Depressive symptoms were evaluated using the Quick Inventory of Depressive Symptomatology (QIDS) before and during acute treatment. Propensity score matching across treatments was used to address confounding by indication, yielding a sample of 392 patients (n = 196 per treatment). Models predicted differential minimum QIDS scores (min-QIDS) over acute treatment using pretreatment EHR measures and SHAP values identified prescriptive predictors. Patients with large PAI scores who received a predicted optimal had significantly lower min-QIDS compared to the non-optimal treatment group (mean difference = 1.19 [95% CI: 0.32, ∞], t = 2.25, q < 0.05, d = 0.26). Our model identified candidate pretreatment factors to provide actionable, effective antidepressant treatment selection guidelines.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
25.10
自引率
3.30%
发文量
170
审稿时长
15 weeks
期刊介绍: npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics. The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.
期刊最新文献
Prediction of individual treatment allocation between electroconvulsive therapy or ketamine using the Personalized Advantage Index A deep learning based ultrasound diagnostic tool driven by 3D visualization of thyroid nodules Continuous multimodal data supply chain and expandable clinical decision support for oncology A scoping review of ethical aspects of public-private partnerships in digital health Generalist medical AI reimbursement challenges and opportunities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1