Precision agriculture technologies for soil site-specific nutrient management: A comprehensive review

IF 8.2 Q1 AGRICULTURE, MULTIDISCIPLINARY Artificial Intelligence in Agriculture Pub Date : 2025-02-11 DOI:10.1016/j.aiia.2025.02.001
Niharika Vullaganti, Billy G. Ram, Xin Sun
{"title":"Precision agriculture technologies for soil site-specific nutrient management: A comprehensive review","authors":"Niharika Vullaganti,&nbsp;Billy G. Ram,&nbsp;Xin Sun","doi":"10.1016/j.aiia.2025.02.001","DOIUrl":null,"url":null,"abstract":"<div><div>Amidst the growing food demands of an increasing population, agricultural intensification frequently depends on excessive chemical and fertilizer applications. While this approach initially boosts crop yields, it effects long-term sustainability through soil degradation and compromised food quality. Thus, prioritizing soil health while enhancing crop production is essential for sustainable food production. Site-Specific Nutrient Management (SSNM) emerges as a critical strategy to increase crop production, maintain soil health, and reduce environmental pollution. Despite its potential, the application of SSNM technologies remain limited in farmers' fields due to existing research gaps. This review critically analyzes and presents research conducted in SSNM in the past 11 years (2013–2024), identifying gaps and future research directions. A comprehensive study of 97 relevant research publications reveals several key findings: a) Electrochemical sensing and spectroscopy are the two widely explored areas in SSNM research, b) Despite numerous technologies in SSNM, each has its own limitation, preventing any single technology from being ideal, c) The selection of models and preprocessing techniques significantly impacts nutrient prediction accuracy, d) No single sensor or sensor combination can predict all soil properties, as suitability is highly attribute-specific. This review provides researchers, and technical personnel in precision agriculture, and farmers with detailed insights into SSNM research, its implementation, limitations, challenges, and future research directions.</div></div>","PeriodicalId":52814,"journal":{"name":"Artificial Intelligence in Agriculture","volume":"15 2","pages":"Pages 147-161"},"PeriodicalIF":8.2000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Agriculture","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589721725000200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Amidst the growing food demands of an increasing population, agricultural intensification frequently depends on excessive chemical and fertilizer applications. While this approach initially boosts crop yields, it effects long-term sustainability through soil degradation and compromised food quality. Thus, prioritizing soil health while enhancing crop production is essential for sustainable food production. Site-Specific Nutrient Management (SSNM) emerges as a critical strategy to increase crop production, maintain soil health, and reduce environmental pollution. Despite its potential, the application of SSNM technologies remain limited in farmers' fields due to existing research gaps. This review critically analyzes and presents research conducted in SSNM in the past 11 years (2013–2024), identifying gaps and future research directions. A comprehensive study of 97 relevant research publications reveals several key findings: a) Electrochemical sensing and spectroscopy are the two widely explored areas in SSNM research, b) Despite numerous technologies in SSNM, each has its own limitation, preventing any single technology from being ideal, c) The selection of models and preprocessing techniques significantly impacts nutrient prediction accuracy, d) No single sensor or sensor combination can predict all soil properties, as suitability is highly attribute-specific. This review provides researchers, and technical personnel in precision agriculture, and farmers with detailed insights into SSNM research, its implementation, limitations, challenges, and future research directions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Artificial Intelligence in Agriculture
Artificial Intelligence in Agriculture Engineering-Engineering (miscellaneous)
CiteScore
21.60
自引率
0.00%
发文量
18
审稿时长
12 weeks
期刊最新文献
Deep learning-based classification, detection, and segmentation of tomato leaf diseases: A state-of-the-art review Using UAV-based multispectral images and CGS-YOLO algorithm to distinguish maize seeding from weed Addressing computation resource exhaustion associated with deep learning training of three-dimensional hyperspectral images using multiclass weed classification Precision agriculture technologies for soil site-specific nutrient management: A comprehensive review Advancing precision agriculture: A comparative analysis of YOLOv8 for multi-class weed detection in cotton cultivation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1