SeqIA: A Python framework for extracting drought impacts from news archives

IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Environmental Modelling & Software Pub Date : 2025-02-24 DOI:10.1016/j.envsoft.2025.106382
Miguel López-Otal , Fernando Domínguez-Castro , Borja Latorre , Javier Vela-Tambo , Jorge Gracia
{"title":"SeqIA: A Python framework for extracting drought impacts from news archives","authors":"Miguel López-Otal ,&nbsp;Fernando Domínguez-Castro ,&nbsp;Borja Latorre ,&nbsp;Javier Vela-Tambo ,&nbsp;Jorge Gracia","doi":"10.1016/j.envsoft.2025.106382","DOIUrl":null,"url":null,"abstract":"<div><div>Drought is a hazard that causes great economic, ecological, and human loss. With an ever-growing risk of climate change, their frequency and magnitude are expected to increase. While there are many indices and metrics available for the analysis of droughts, assessing their impacts represents one of the best ways to understand their magnitude and extent. However, there are no systematic records outlining these impacts.</div><div>To help in their ongoing creation, we present a software framework that leverages raw newspaper articles, identifies any drought-related ones, and automatically classifies them according to a set of socioeconomic impacts. The information is provided to the user in a structured format, including geographical coordinates and their date of reporting. Our approach employs state-of-the-art Transformer-based Natural Language Processing (NLP) techniques, which achieve great accuracy. We currently support newspaper articles in the Spanish language within Spain, but our framework can be expanded to other countries and languages.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"187 ","pages":"Article 106382"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225000660","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Drought is a hazard that causes great economic, ecological, and human loss. With an ever-growing risk of climate change, their frequency and magnitude are expected to increase. While there are many indices and metrics available for the analysis of droughts, assessing their impacts represents one of the best ways to understand their magnitude and extent. However, there are no systematic records outlining these impacts.
To help in their ongoing creation, we present a software framework that leverages raw newspaper articles, identifies any drought-related ones, and automatically classifies them according to a set of socioeconomic impacts. The information is provided to the user in a structured format, including geographical coordinates and their date of reporting. Our approach employs state-of-the-art Transformer-based Natural Language Processing (NLP) techniques, which achieve great accuracy. We currently support newspaper articles in the Spanish language within Spain, but our framework can be expanded to other countries and languages.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
期刊最新文献
Integration and execution of Community Land Model Urban (CLMU) in a containerized environment SeqIA: A Python framework for extracting drought impacts from news archives porousRTFoam v1.0: An open-source numerical platform for simulating pore-scale reactive transport processes in porous media Climate change effects at basin-scale: Weathering rates and CO2 consumption assessment by using the reaction path modelling Scientometric analysis of development and opportunities for research in digital agriculture innovation management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1