The impact of radicals on physicochemical properties of waste activated sludge during hydrodynamic cavitation treatment

IF 8.7 1区 化学 Q1 ACOUSTICS Ultrasonics Sonochemistry Pub Date : 2025-02-24 DOI:10.1016/j.ultsonch.2025.107291
Marko Blagojevič , Mojca Zupanc , Jurij Gostiša , Blaž Stres , Alenka Šmid , Matevž Dular , Lidija Slemenik Perše , Urška Gradišar Centa , Benjamin Bizjan , Gašper Rak , Uroš Novak , Blaž Likozar , Sabina Kolbl Repinc
{"title":"The impact of radicals on physicochemical properties of waste activated sludge during hydrodynamic cavitation treatment","authors":"Marko Blagojevič ,&nbsp;Mojca Zupanc ,&nbsp;Jurij Gostiša ,&nbsp;Blaž Stres ,&nbsp;Alenka Šmid ,&nbsp;Matevž Dular ,&nbsp;Lidija Slemenik Perše ,&nbsp;Urška Gradišar Centa ,&nbsp;Benjamin Bizjan ,&nbsp;Gašper Rak ,&nbsp;Uroš Novak ,&nbsp;Blaž Likozar ,&nbsp;Sabina Kolbl Repinc","doi":"10.1016/j.ultsonch.2025.107291","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, laboratory-scale Pinned Disc Rotary Generator of Hydrodynamic Cavitation was used to treat waste-activated sludge with a Total Solids concentration of 0.7 %. Five different rotor–stator arrangements were tested, focusing on waste-activated sludge physicochemical and rheological parameters of industrial relevance: general chemical analysis, rheometry, dewaterability, interfacial tension, UV–Vis and FTIR spectroscopy. Radical formation in all five arrangements was confirmed using salicylic acid dosimetry before sample testing. Three of the arrangements generated twice the radical concentration of the other two and achieved a disintegration degree three times higher (17 % compared to 5 %). Capillary Suction Time tests demonstrated a 14-fold reduction in filterability across all arrangements, accompanied by an increase in interfacial tension exceeding 10 %. Statistically significant changes in the UV–Vis spectra indicated alterations in dissolved organic matter humification, aromaticity, and molecular size of colorimetric dissolved organic matter, DNA, and RNA. FTIR analysis revealed characteristic peaks at 1537 cm<sup>−1</sup> and 1648 cm<sup>−1</sup>, signifying microbial cell wall damage. Rheological analysis showed a reduction in apparent viscosity within the low shear stress zone (<em>τ</em> &lt; 5 Pa) and a shift in the yield stress point to lower shear stresses (<em>τ</em> &lt; 0.14 Pa compared to <em>τ</em> = 0.17 Pa for the untreated samples). Pearson’s correlation test revealed strong, statistically significant correlations between cell wall damage (as identified by FTIR) and hydrodynamic conditions in the reactor, while the correlation with radical formation was not statistically significant. This suggests that hydrodynamic forces were the primary drivers of cell wall damage, with potential synergetic effects from radicals.</div></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"115 ","pages":"Article 107291"},"PeriodicalIF":8.7000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350417725000707","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, laboratory-scale Pinned Disc Rotary Generator of Hydrodynamic Cavitation was used to treat waste-activated sludge with a Total Solids concentration of 0.7 %. Five different rotor–stator arrangements were tested, focusing on waste-activated sludge physicochemical and rheological parameters of industrial relevance: general chemical analysis, rheometry, dewaterability, interfacial tension, UV–Vis and FTIR spectroscopy. Radical formation in all five arrangements was confirmed using salicylic acid dosimetry before sample testing. Three of the arrangements generated twice the radical concentration of the other two and achieved a disintegration degree three times higher (17 % compared to 5 %). Capillary Suction Time tests demonstrated a 14-fold reduction in filterability across all arrangements, accompanied by an increase in interfacial tension exceeding 10 %. Statistically significant changes in the UV–Vis spectra indicated alterations in dissolved organic matter humification, aromaticity, and molecular size of colorimetric dissolved organic matter, DNA, and RNA. FTIR analysis revealed characteristic peaks at 1537 cm−1 and 1648 cm−1, signifying microbial cell wall damage. Rheological analysis showed a reduction in apparent viscosity within the low shear stress zone (τ < 5 Pa) and a shift in the yield stress point to lower shear stresses (τ < 0.14 Pa compared to τ = 0.17 Pa for the untreated samples). Pearson’s correlation test revealed strong, statistically significant correlations between cell wall damage (as identified by FTIR) and hydrodynamic conditions in the reactor, while the correlation with radical formation was not statistically significant. This suggests that hydrodynamic forces were the primary drivers of cell wall damage, with potential synergetic effects from radicals.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Ultrasonics Sonochemistry
Ultrasonics Sonochemistry 化学-化学综合
CiteScore
15.80
自引率
11.90%
发文量
361
审稿时长
59 days
期刊介绍: Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels. Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.
期刊最新文献
High-frequency ultrasound induced the preparation of oxidized low density lipoprotein Ultrasound-assisted preparation of shikonin-loaded emulsions for the treatment of bacterial infections Sustainable extraction of phytochemicals from Mentha arvensis using supramolecular eutectic solvent via microwave Irradiation: Unveiling insights with CatBoost-Driven feature analysis Thermosonication enhanced the bioactive, antioxidant, and flavor attributes of freshly squeezed tomato juice Corrigendum to “Ultrasound-assisted low-sodium salt curing to modify the quality characteristics of beef for aging” [Ultrason. Sonochem. 111 (2024) 107134]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1