Optimal scheduling of integrated energy system considering exergoeconomic performance

IF 9 1区 工程技术 Q1 ENERGY & FUELS Energy Pub Date : 2025-02-21 DOI:10.1016/j.energy.2025.135171
Shiyun Peng , Sha Liu , Xiao Wu
{"title":"Optimal scheduling of integrated energy system considering exergoeconomic performance","authors":"Shiyun Peng ,&nbsp;Sha Liu ,&nbsp;Xiao Wu","doi":"10.1016/j.energy.2025.135171","DOIUrl":null,"url":null,"abstract":"<div><div>Scheduling of integrated energy system (IES) is crucial for coordinating multiple components to achieve optimal operation of the entire system. Conventional scheduling methods only consider one of operating efficiency or economy, which makes it difficult to comprehensively improve the operational quality of the IES. To this end, this paper proposes an exergoeconomic optimization scheduling method for the IES based on a novel performance indicator, namely the specific exergy cost. Defined as the ratio of the exergy cost and the exergy production, the specific exergy cost reflects the quantity and quality distributions of both fuel and product flows, thus integrates exergy efficiency and economic factors into a unified framework. Optimal loading of each equipment is then determined through minimizing the specific exergy cost indicator. Simulation results on a typical combined cooling, heating and power IES show that the proposed method reduces the specific exergy cost by 9.60 % and increases exergy efficiency by 4.66 % compared with conventional economic-based scheduling. In-depth investigations are carried out under internal operating parameters and external market condition changes, which further demonstrate the effectiveness and applicability of the proposed exergoeconomic scheduling approach.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"320 ","pages":"Article 135171"},"PeriodicalIF":9.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360544225008138","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Scheduling of integrated energy system (IES) is crucial for coordinating multiple components to achieve optimal operation of the entire system. Conventional scheduling methods only consider one of operating efficiency or economy, which makes it difficult to comprehensively improve the operational quality of the IES. To this end, this paper proposes an exergoeconomic optimization scheduling method for the IES based on a novel performance indicator, namely the specific exergy cost. Defined as the ratio of the exergy cost and the exergy production, the specific exergy cost reflects the quantity and quality distributions of both fuel and product flows, thus integrates exergy efficiency and economic factors into a unified framework. Optimal loading of each equipment is then determined through minimizing the specific exergy cost indicator. Simulation results on a typical combined cooling, heating and power IES show that the proposed method reduces the specific exergy cost by 9.60 % and increases exergy efficiency by 4.66 % compared with conventional economic-based scheduling. In-depth investigations are carried out under internal operating parameters and external market condition changes, which further demonstrate the effectiveness and applicability of the proposed exergoeconomic scheduling approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy
Energy 工程技术-能源与燃料
CiteScore
15.30
自引率
14.40%
发文量
0
审稿时长
14.2 weeks
期刊介绍: Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics. The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management. Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.
期刊最新文献
Permeating hydrogen effect on the protective performance of a composite film consisting of corrosion inhibitors and iron oxides used in CO2 utilization related environment Numerical investigation of thermal energy storage in wavy enclosures with nanoencapsulated phase change materials using deep learning Adaptive distribution topology learning on distributed source energisation and islanding The low-carbon transition of rotary engines: Potential and challenges of alcohol fuels A techno-enviro-economic framework for optimal operation of a battery-driven hybrid energy system with biomass: A risk-averse approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1