E.O. Babatunde , S. Enomah , O.M. Akwenuke , M.A. Ibeh , C.O. Okwelum , M.M. Mundu , P.O. Adepoju , A.O. Aki , O.D. Oghenejabor , T.F. Adepoju , C.O. Ifedora , K. Mabel
{"title":"Preparation and characterization of Palm Kernel Shell (PKS) based biocatalyst for the transformation of kernel oil to biodiesel","authors":"E.O. Babatunde , S. Enomah , O.M. Akwenuke , M.A. Ibeh , C.O. Okwelum , M.M. Mundu , P.O. Adepoju , A.O. Aki , O.D. Oghenejabor , T.F. Adepoju , C.O. Ifedora , K. Mabel","doi":"10.1016/j.sajce.2025.02.008","DOIUrl":null,"url":null,"abstract":"<div><div>The proportion of palm oil produced worldwide as of 2023–2024 was 79.46 million metric tons. Specifically, 90 % of the biomass from palm trees is wasted, and only 10 % of the total oil palm products are made from palm kernel oil. The majority of research' conclusions show that PKS has enormous potential as a bio-fuel for the generation of syngas and biodiesel, as well as a bio-adsorbent, abrasive, detoxifying, antibacterial, antifungal, and antioxidant substance. Thus, in the presence of catalytically calcined kernel shell ash, this study uses bagasse from palm kernels as a bio-adsorbent of palm kernel oil for the production of biofuel. The proportion of palm oil produced worldwide as of 2023–2024 was 79.46 million metric tons. Specifically, 90 % of the biomass from palm trees is wasted, and only 10 % of the total oil palm products are made from palm kernel oil. The majority of research's conclusions show that PKS has enormous potential as a biofuel for the generation of syngas and biodiesel, as well as a bio-adsorbent, abrasive, detoxifying, antibacterial, antifungal, and antioxidant substance. Thus, in the presence of catalytically calcined kernel shell ash, this study uses bagasse from palm kernels as a bio-adsorbent of palm kernel oil for the production of biofuel.</div><div>Using definite screening design (DSD), the procedure was improved by taking into account four factors: reaction temperature, reaction duration, CSKP concentration, and methanol-oil-molar- ratio (MOH/OMR). These variables give rise to thirteen experimental runs. The ability of kernel shell bagasse to function as a bio-adsorbent for the transformation of high-acidity oil into low-acidity oil was demonstrated by the results. K>Mg>Ca><em>P</em>>Na>Mn was discovered to be present in the developed CSKP. A biofuel yield of 99.73 % (wt/wt.) at a reaction time of 67.574 min, a reaction temperature of 67.116 min, a CKSP of 3.957 % (wt.), and a MOH/OMR of 1:7.989 in 100 outcomes at 100 % desirability were projected using statistical process optimization. Three experimental runs were used to validate the projected value, and an average value of 99.65 % (wt./wt.) was found. The catalyst can be recycled, and the biofuel grade that was created showed a high potential for energy.</div><div>According to the study's findings, palm kernel fruit wastes have the potential to be used as a raw material to make biodiesel.</div></div>","PeriodicalId":21926,"journal":{"name":"South African Journal of Chemical Engineering","volume":"52 ","pages":"Pages 200-210"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"South African Journal of Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1026918525000198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
The proportion of palm oil produced worldwide as of 2023–2024 was 79.46 million metric tons. Specifically, 90 % of the biomass from palm trees is wasted, and only 10 % of the total oil palm products are made from palm kernel oil. The majority of research' conclusions show that PKS has enormous potential as a bio-fuel for the generation of syngas and biodiesel, as well as a bio-adsorbent, abrasive, detoxifying, antibacterial, antifungal, and antioxidant substance. Thus, in the presence of catalytically calcined kernel shell ash, this study uses bagasse from palm kernels as a bio-adsorbent of palm kernel oil for the production of biofuel. The proportion of palm oil produced worldwide as of 2023–2024 was 79.46 million metric tons. Specifically, 90 % of the biomass from palm trees is wasted, and only 10 % of the total oil palm products are made from palm kernel oil. The majority of research's conclusions show that PKS has enormous potential as a biofuel for the generation of syngas and biodiesel, as well as a bio-adsorbent, abrasive, detoxifying, antibacterial, antifungal, and antioxidant substance. Thus, in the presence of catalytically calcined kernel shell ash, this study uses bagasse from palm kernels as a bio-adsorbent of palm kernel oil for the production of biofuel.
Using definite screening design (DSD), the procedure was improved by taking into account four factors: reaction temperature, reaction duration, CSKP concentration, and methanol-oil-molar- ratio (MOH/OMR). These variables give rise to thirteen experimental runs. The ability of kernel shell bagasse to function as a bio-adsorbent for the transformation of high-acidity oil into low-acidity oil was demonstrated by the results. K>Mg>Ca>P>Na>Mn was discovered to be present in the developed CSKP. A biofuel yield of 99.73 % (wt/wt.) at a reaction time of 67.574 min, a reaction temperature of 67.116 min, a CKSP of 3.957 % (wt.), and a MOH/OMR of 1:7.989 in 100 outcomes at 100 % desirability were projected using statistical process optimization. Three experimental runs were used to validate the projected value, and an average value of 99.65 % (wt./wt.) was found. The catalyst can be recycled, and the biofuel grade that was created showed a high potential for energy.
According to the study's findings, palm kernel fruit wastes have the potential to be used as a raw material to make biodiesel.
期刊介绍:
The journal has a particular interest in publishing papers on the unique issues facing chemical engineering taking place in countries that are rich in resources but face specific technical and societal challenges, which require detailed knowledge of local conditions to address. Core topic areas are: Environmental process engineering • treatment and handling of waste and pollutants • the abatement of pollution, environmental process control • cleaner technologies • waste minimization • environmental chemical engineering • water treatment Reaction Engineering • modelling and simulation of reactors • transport phenomena within reacting systems • fluidization technology • reactor design Separation technologies • classic separations • novel separations Process and materials synthesis • novel synthesis of materials or processes, including but not limited to nanotechnology, ceramics, etc. Metallurgical process engineering and coal technology • novel developments related to the minerals beneficiation industry • coal technology Chemical engineering education • guides to good practice • novel approaches to learning • education beyond university.