Inductive reasoning with large language models: A simulated randomized controlled trial for epilepsy

IF 2 4区 医学 Q3 CLINICAL NEUROLOGY Epilepsy Research Pub Date : 2025-03-01 DOI:10.1016/j.eplepsyres.2025.107532
Daniel M. Goldenholz , Shira R. Goldenholz , Sara Habib , M. Brandon Westover
{"title":"Inductive reasoning with large language models: A simulated randomized controlled trial for epilepsy","authors":"Daniel M. Goldenholz ,&nbsp;Shira R. Goldenholz ,&nbsp;Sara Habib ,&nbsp;M. Brandon Westover","doi":"10.1016/j.eplepsyres.2025.107532","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><div>To investigate the potential of using artificial intelligence (AI), specifically large language models (LLMs), for synthesizing information in a simulated randomized clinical trial (RCT) for an anti-seizure medication, cenobamate, demonstrating the feasibility of inductive reasoning via medical chart review.</div></div><div><h3>Methods</h3><div>An LLM-generated simulated RCT was conducted, featuring a placebo arm and a full-strength drug arm with a cohort of 240 patients divided 1:1. Seizure counts were simulated using a realistic seizure diary simulator. The study utilized LLMs to generate clinical notes with four neurologist writing styles and random extraneous details. A secondary LLM pipeline synthesized data from these notes. The efficacy and safety of cenobamate in seizure control were evaluated by both an LLM-based pipeline and a human reader.</div></div><div><h3>Results</h3><div>The AI analysis closely mirrored human analysis, demonstrating the drug's efficacy with marginal differences (&lt;3 %) in identifying both drug efficacy and reported symptoms. The AI successfully identified the number of seizures, symptom reports, and treatment efficacy, with statistical analysis comparing the 50 %-responder rate and median percentage change between the placebo and drug arms, as well as side effect rates in each arm.</div></div><div><h3>Discussion</h3><div>This study highlights the potential of AI to accurately analyze noisy clinical notes to inductively produce clinical knowledge. Here, treatment effect sizes and symptom frequencies derived from unstructured simulated notes were inferred despite many distractors. The findings emphasize the relevance of AI in future clinical research, offering a scalable and efficient alternative to traditional labor-intensive data mining.</div></div>","PeriodicalId":11914,"journal":{"name":"Epilepsy Research","volume":"211 ","pages":"Article 107532"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epilepsy Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920121125000336","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction

To investigate the potential of using artificial intelligence (AI), specifically large language models (LLMs), for synthesizing information in a simulated randomized clinical trial (RCT) for an anti-seizure medication, cenobamate, demonstrating the feasibility of inductive reasoning via medical chart review.

Methods

An LLM-generated simulated RCT was conducted, featuring a placebo arm and a full-strength drug arm with a cohort of 240 patients divided 1:1. Seizure counts were simulated using a realistic seizure diary simulator. The study utilized LLMs to generate clinical notes with four neurologist writing styles and random extraneous details. A secondary LLM pipeline synthesized data from these notes. The efficacy and safety of cenobamate in seizure control were evaluated by both an LLM-based pipeline and a human reader.

Results

The AI analysis closely mirrored human analysis, demonstrating the drug's efficacy with marginal differences (<3 %) in identifying both drug efficacy and reported symptoms. The AI successfully identified the number of seizures, symptom reports, and treatment efficacy, with statistical analysis comparing the 50 %-responder rate and median percentage change between the placebo and drug arms, as well as side effect rates in each arm.

Discussion

This study highlights the potential of AI to accurately analyze noisy clinical notes to inductively produce clinical knowledge. Here, treatment effect sizes and symptom frequencies derived from unstructured simulated notes were inferred despite many distractors. The findings emphasize the relevance of AI in future clinical research, offering a scalable and efficient alternative to traditional labor-intensive data mining.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Epilepsy Research
Epilepsy Research 医学-临床神经学
CiteScore
0.10
自引率
4.50%
发文量
143
审稿时长
62 days
期刊介绍: Epilepsy Research provides for publication of high quality articles in both basic and clinical epilepsy research, with a special emphasis on translational research that ultimately relates to epilepsy as a human condition. The journal is intended to provide a forum for reporting the best and most rigorous epilepsy research from all disciplines ranging from biophysics and molecular biology to epidemiological and psychosocial research. As such the journal will publish original papers relevant to epilepsy from any scientific discipline and also studies of a multidisciplinary nature. Clinical and experimental research papers adopting fresh conceptual approaches to the study of epilepsy and its treatment are encouraged. The overriding criteria for publication are novelty, significant clinical or experimental relevance, and interest to a multidisciplinary audience in the broad arena of epilepsy. Review articles focused on any topic of epilepsy research will also be considered, but only if they present an exceptionally clear synthesis of current knowledge and future directions of a research area, based on a critical assessment of the available data or on hypotheses that are likely to stimulate more critical thinking and further advances in an area of epilepsy research.
期刊最新文献
Inductive reasoning with large language models: A simulated randomized controlled trial for epilepsy Seizures associated with dural arteriovenous fistulas: A systematic review of cases Extracellular bromide enhances GABAA receptor function in the immature, but not the adolescent rat pilocarpine epilepsy model The role of seizure video recordings in the diagnosis of referred drug-resistant epilepsy: A stepwise approach Impact of valproate therapy on timing of puberty in adolescents with childhood-onset epilepsy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1