The hydrocarbon generation potential of the mudstone source rock in the Jurassic Shuixigou Group, the Turpan-Hami Basin, and indicative significance for oil and gas exploration

IF 4.2 3区 工程技术 Q2 ENERGY & FUELS Natural Gas Industry B Pub Date : 2025-02-01 DOI:10.1016/j.ngib.2025.01.006
Tong Lin , Kangle Wang , Haidong Wang , Runze Yang , Pan Li , Long Su
{"title":"The hydrocarbon generation potential of the mudstone source rock in the Jurassic Shuixigou Group, the Turpan-Hami Basin, and indicative significance for oil and gas exploration","authors":"Tong Lin ,&nbsp;Kangle Wang ,&nbsp;Haidong Wang ,&nbsp;Runze Yang ,&nbsp;Pan Li ,&nbsp;Long Su","doi":"10.1016/j.ngib.2025.01.006","DOIUrl":null,"url":null,"abstract":"<div><div>The coal-bearing source rocks in the Jurassic Shuixigou Group have received widespread attention as the primary source rocks in the Turpan-Hami Basin of China, but the hydrocarbon generation potential and process of the mudstone in the Shuixigou Group, especially the mudstone at the top of the Sangonghe Formation, are unclear. Taking the source rocks of the Xishanyao Formation and the Sangonghe Formation as objectives, this study conducted rock pyrolysis and gold tube simulation experiment to investigate their hydrocarbon generation characteristics and differences. Our results indicate that the source rocks of the Xishanyao Formation include mudstone, carbonaceous mudstone and coal, and the quality of the source rocks is highly heterogeneous; the source rocks of the Sangonghe Formation are mainly composed of mudstone, and it is a good gas source rock. Simulation experiments found that the activation energy required for the generation of gaseous hydrocarbons by the mudstone of the Sangonghe Formation is lower than that by the mudstone of the Xishanyao Formation. The hydrocarbon generation process can be divided into three stages for both formations, but the gas generation potential of the Xishanyao Formation mudstone is higher than that of the Sangonghe Formation mudstone. A large amount of hydrocarbon was generated by the mudstone of the Xishanyao Formation when entering late thermal evolution, of which methane is dominant, mainly from the demethylation reaction of mature kerogen. On the other hand, a large amount of hydrocarbon was generated by the mudstone of the Sangonghe Formation in the early stage of thermal evolution, of which light hydrocarbon and wet gas are dominant, mainly from the early cracking stage of kerogen. This difference may be attributed to the structure of kerogen. The mudstone of the Xishanyao Formation is conducive to the formation of highly mature dry gas reservoirs, while the mudstone of the Sangonghe Formation is conducive to the formation of low maturity condensate gas and volatile oil reservoirs. The research result provides a scientific basis for the comparison of oil and gas sources and the evaluation of oil and gas resources in the Turpan-Hami Basin.</div></div>","PeriodicalId":37116,"journal":{"name":"Natural Gas Industry B","volume":"12 1","pages":"Pages 50-63"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Gas Industry B","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352854025000063","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The coal-bearing source rocks in the Jurassic Shuixigou Group have received widespread attention as the primary source rocks in the Turpan-Hami Basin of China, but the hydrocarbon generation potential and process of the mudstone in the Shuixigou Group, especially the mudstone at the top of the Sangonghe Formation, are unclear. Taking the source rocks of the Xishanyao Formation and the Sangonghe Formation as objectives, this study conducted rock pyrolysis and gold tube simulation experiment to investigate their hydrocarbon generation characteristics and differences. Our results indicate that the source rocks of the Xishanyao Formation include mudstone, carbonaceous mudstone and coal, and the quality of the source rocks is highly heterogeneous; the source rocks of the Sangonghe Formation are mainly composed of mudstone, and it is a good gas source rock. Simulation experiments found that the activation energy required for the generation of gaseous hydrocarbons by the mudstone of the Sangonghe Formation is lower than that by the mudstone of the Xishanyao Formation. The hydrocarbon generation process can be divided into three stages for both formations, but the gas generation potential of the Xishanyao Formation mudstone is higher than that of the Sangonghe Formation mudstone. A large amount of hydrocarbon was generated by the mudstone of the Xishanyao Formation when entering late thermal evolution, of which methane is dominant, mainly from the demethylation reaction of mature kerogen. On the other hand, a large amount of hydrocarbon was generated by the mudstone of the Sangonghe Formation in the early stage of thermal evolution, of which light hydrocarbon and wet gas are dominant, mainly from the early cracking stage of kerogen. This difference may be attributed to the structure of kerogen. The mudstone of the Xishanyao Formation is conducive to the formation of highly mature dry gas reservoirs, while the mudstone of the Sangonghe Formation is conducive to the formation of low maturity condensate gas and volatile oil reservoirs. The research result provides a scientific basis for the comparison of oil and gas sources and the evaluation of oil and gas resources in the Turpan-Hami Basin.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Natural Gas Industry B
Natural Gas Industry B Earth and Planetary Sciences-Geology
CiteScore
5.80
自引率
6.10%
发文量
46
审稿时长
79 days
期刊最新文献
Editorial Board Dynamic simulation optimization of the hydrogen liquefaction process Advances on research of H2S removal by deep eutectic solvents as green solvent Relationship between potentiometric surface and abnormally low pressure in the Yanchang Formation, Zhenjing area, Ordos Basin, China The hydrocarbon generation potential of the mudstone source rock in the Jurassic Shuixigou Group, the Turpan-Hami Basin, and indicative significance for oil and gas exploration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1