{"title":"Alkali metal ion codoped Eu3+ activated yttrium orthovanadate with tunable photoluminescence properties for LEDs and anti-counterfeiting applications","authors":"Anuradha , Arpita Dwivedi , Satyam Upadhyay , Amit Srivastava , Monika Srivastava , Rajneesh Kumar , S.K. Srivastava","doi":"10.1016/j.ceramint.2024.12.310","DOIUrl":null,"url":null,"abstract":"<div><div>The present experimental report articulates a comprehensive investigation on the synthesis, structural, and photoluminescence characteristics of M<sub>0.05</sub>,Eu<sub>0.05</sub>:Y<sub>0.90</sub>VO<sub>4</sub> (M = Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup>) nanophosphors synthesised by auto-combustion approach, for optical display and anticounterfeiting technologies. Various characterization tools such as X-ray diffractometer (XRD), Transmission Electron Microscope (TEM), Scanning Electron Microscope (SEM), Fourier transform infra-red (FTIR) Spectroscope, and Raman spectroscope have been employed to understand the morphology and crystal structure of M<sub>0.05</sub>,Eu<sub>0.05</sub>:Y<sub>0.90</sub>VO<sub>4</sub> (M = Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup>) nanophosphor, which reveals the formation of a pure tetragonal structure and well crystalline phase. Moreover, the UV–Vis spectra, suggests that the as-synthesised material substantiated to possess an energy band gap of ∼3.6 eV conjecturing it as a wide-band material, and the refractive index (n) of the prepared samples has been deduced as ∼ 2.1. Among all alkali ions, Li<sup>+</sup>-codoped sample exhibits the most intense PL spectra. The enhancement in PL intensity has been observed due to the energy transfer of VO<sub>4</sub><sup>3−</sup>→Eu<sup>3+</sup> and the codoping of lithium ions acts as a good charge compensator. For the optimized sample CIE coordinates has been found as (0.59, 0.39) and CCT value as 1712 K, which suggest it as a prospective candidate for the warm LEDs. The optimized sample has further been investigated for the visualization of Latent fingerprint on glass slide and as security ink. It displays efficient applicability as a well-defined ridge features up to level III. Henceforth, the as-synthesised Li<sub>0.05</sub>,Eu<sub>0.05</sub>:Y<sub>0.90</sub>VO<sub>4</sub> nanophosphor may potentially be applied for multipurpose applications.</div></div>","PeriodicalId":267,"journal":{"name":"Ceramics International","volume":"51 7","pages":"Pages 8802-8815"},"PeriodicalIF":5.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0272884224059819","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
The present experimental report articulates a comprehensive investigation on the synthesis, structural, and photoluminescence characteristics of M0.05,Eu0.05:Y0.90VO4 (M = Li+, Na+, K+) nanophosphors synthesised by auto-combustion approach, for optical display and anticounterfeiting technologies. Various characterization tools such as X-ray diffractometer (XRD), Transmission Electron Microscope (TEM), Scanning Electron Microscope (SEM), Fourier transform infra-red (FTIR) Spectroscope, and Raman spectroscope have been employed to understand the morphology and crystal structure of M0.05,Eu0.05:Y0.90VO4 (M = Li+, Na+, K+) nanophosphor, which reveals the formation of a pure tetragonal structure and well crystalline phase. Moreover, the UV–Vis spectra, suggests that the as-synthesised material substantiated to possess an energy band gap of ∼3.6 eV conjecturing it as a wide-band material, and the refractive index (n) of the prepared samples has been deduced as ∼ 2.1. Among all alkali ions, Li+-codoped sample exhibits the most intense PL spectra. The enhancement in PL intensity has been observed due to the energy transfer of VO43−→Eu3+ and the codoping of lithium ions acts as a good charge compensator. For the optimized sample CIE coordinates has been found as (0.59, 0.39) and CCT value as 1712 K, which suggest it as a prospective candidate for the warm LEDs. The optimized sample has further been investigated for the visualization of Latent fingerprint on glass slide and as security ink. It displays efficient applicability as a well-defined ridge features up to level III. Henceforth, the as-synthesised Li0.05,Eu0.05:Y0.90VO4 nanophosphor may potentially be applied for multipurpose applications.
期刊介绍:
Ceramics International covers the science of advanced ceramic materials. The journal encourages contributions that demonstrate how an understanding of the basic chemical and physical phenomena may direct materials design and stimulate ideas for new or improved processing techniques, in order to obtain materials with desired structural features and properties.
Ceramics International covers oxide and non-oxide ceramics, functional glasses, glass ceramics, amorphous inorganic non-metallic materials (and their combinations with metal and organic materials), in the form of particulates, dense or porous bodies, thin/thick films and laminated, graded and composite structures. Process related topics such as ceramic-ceramic joints or joining ceramics with dissimilar materials, as well as surface finishing and conditioning are also covered. Besides traditional processing techniques, manufacturing routes of interest include innovative procedures benefiting from externally applied stresses, electromagnetic fields and energetic beams, as well as top-down and self-assembly nanotechnology approaches. In addition, the journal welcomes submissions on bio-inspired and bio-enabled materials designs, experimentally validated multi scale modelling and simulation for materials design, and the use of the most advanced chemical and physical characterization techniques of structure, properties and behaviour.
Technologically relevant low-dimensional systems are a particular focus of Ceramics International. These include 0, 1 and 2-D nanomaterials (also covering CNTs, graphene and related materials, and diamond-like carbons), their nanocomposites, as well as nano-hybrids and hierarchical multifunctional nanostructures that might integrate molecular, biological and electronic components.