Hariana Hariana , Adi Prismantoko , Hafizh Ghazidin , Ade Sana Ruhiyat , Nandang Suhendra , Arif Darmawan , Firman Bagja Juangsa , Rachmanoe Indarto , Yibin Wang , Muhammad Aziz
{"title":"Mitigation of ash deposition problem during co-combustion of coal and refuse-derived fuel using aluminium-rich anti-slagging additives","authors":"Hariana Hariana , Adi Prismantoko , Hafizh Ghazidin , Ade Sana Ruhiyat , Nandang Suhendra , Arif Darmawan , Firman Bagja Juangsa , Rachmanoe Indarto , Yibin Wang , Muhammad Aziz","doi":"10.1016/j.joei.2025.102041","DOIUrl":null,"url":null,"abstract":"<div><div>Processing MSW into refuse-derived fuel (RDF), which has a high heating value, can substitute for coal in power plants, but the high content of alkali and chlorine in RDF easily exacerbates ash deposition problems for boiler pipes during co-combustion. In order to alleviate these problems, the co-combustion experiment of coal with a dosage of 20 wt% of two typical RDFs (biodegradable-rich RDF and blended RDF) at 1250 °C was studied in a laboratory-scale furnace. The effectiveness of two kinds of aluminum-rich anti-slagging additives (aluminosilicate (Al-Si) and aluminum-sulfate (Al-S) based) for ash deposition was comprehensively evaluated at doses of 0.1 and 1.0 wt%. The results showed that severe fouling occurred at the co-combustion ratio of 20 wt% RDFs. The dosage of 1.0 wt% Al-Si-based additive effectively reduced the formation of sticky particles and low melting point minerals, and the deposits on the probe surface were more easily removed. The anorthite mineral in the biodegradable-rich RDF phase transforms to anhydrite and was not present when Al-Si-based additives were added. These findings are essential for clarifying the fact that the Al-Si-based additive with a low adding ratio can potentially mitigate ash deposition problems in coal-fired boilers.</div></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":"120 ","pages":"Article 102041"},"PeriodicalIF":5.6000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Energy Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1743967125000698","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Processing MSW into refuse-derived fuel (RDF), which has a high heating value, can substitute for coal in power plants, but the high content of alkali and chlorine in RDF easily exacerbates ash deposition problems for boiler pipes during co-combustion. In order to alleviate these problems, the co-combustion experiment of coal with a dosage of 20 wt% of two typical RDFs (biodegradable-rich RDF and blended RDF) at 1250 °C was studied in a laboratory-scale furnace. The effectiveness of two kinds of aluminum-rich anti-slagging additives (aluminosilicate (Al-Si) and aluminum-sulfate (Al-S) based) for ash deposition was comprehensively evaluated at doses of 0.1 and 1.0 wt%. The results showed that severe fouling occurred at the co-combustion ratio of 20 wt% RDFs. The dosage of 1.0 wt% Al-Si-based additive effectively reduced the formation of sticky particles and low melting point minerals, and the deposits on the probe surface were more easily removed. The anorthite mineral in the biodegradable-rich RDF phase transforms to anhydrite and was not present when Al-Si-based additives were added. These findings are essential for clarifying the fact that the Al-Si-based additive with a low adding ratio can potentially mitigate ash deposition problems in coal-fired boilers.
期刊介绍:
The Journal of the Energy Institute provides peer reviewed coverage of original high quality research on energy, engineering and technology.The coverage is broad and the main areas of interest include:
Combustion engineering and associated technologies; process heating; power generation; engines and propulsion; emissions and environmental pollution control; clean coal technologies; carbon abatement technologies
Emissions and environmental pollution control; safety and hazards;
Clean coal technologies; carbon abatement technologies, including carbon capture and storage, CCS;
Petroleum engineering and fuel quality, including storage and transport
Alternative energy sources; biomass utilisation and biomass conversion technologies; energy from waste, incineration and recycling
Energy conversion, energy recovery and energy efficiency; space heating, fuel cells, heat pumps and cooling systems
Energy storage
The journal''s coverage reflects changes in energy technology that result from the transition to more efficient energy production and end use together with reduced carbon emission.