{"title":"Prescribing optimal health-aware operation for urban air mobility with deep reinforcement learning","authors":"Mina Montazeri , Chetan S. Kulkarni , Olga Fink","doi":"10.1016/j.ress.2025.110897","DOIUrl":null,"url":null,"abstract":"<div><div>Urban Air Mobility (UAM) aims to expand existing transportation networks in metropolitan areas by offering short flights either to transport passengers or cargo. Electric vertical takeoff and landing aircraft powered by lithium-ion battery packs are considered promising for such applications. Efficient mission planning is crucial, maximizing the number of flights per battery charge while ensuring completion even under unforeseen events. As batteries degrade, precise mission planning becomes challenging due to uncertainties in the end-of-discharge prediction. This often leads to adding safety margins, reducing the number or duration of potential flights on one battery charge. While predicting the end of discharge can support decision-making, it remains insufficient in case of unforeseen events, such as adverse weather conditions. This necessitates health-aware real-time control to address any unexpected events and extend the time until the end of charge while taking the current degradation state into account. This paper addresses the joint problem of mission planning and health-aware real-time control of operational parameters to prescriptively control the duration of one discharge cycle of the battery pack. We propose an algorithm that proactively prescribes operational parameters to extend the discharge cycle based on the battery’s current health status while optimizing the mission. The proposed deep reinforcement learning algorithm facilitates operational parameter optimization and path planning while accounting for the degradation state, even in the presence of uncertainties. Evaluation of simulated flights of a National Aeronautics and Space Administration (NASA) conceptual multirotor aircraft model, collected from Hardware-in-the-loop experiments, demonstrates the algorithm’s near-optimal performance across various operational scenarios, allowing adaptation to changed environmental conditions. The proposed health-aware prescriptive algorithm enables a more flexible and efficient operation not only in single aircraft but also in fleet operations, increasing the overall system throughput.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":"259 ","pages":"Article 110897"},"PeriodicalIF":9.4000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832025001000","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Urban Air Mobility (UAM) aims to expand existing transportation networks in metropolitan areas by offering short flights either to transport passengers or cargo. Electric vertical takeoff and landing aircraft powered by lithium-ion battery packs are considered promising for such applications. Efficient mission planning is crucial, maximizing the number of flights per battery charge while ensuring completion even under unforeseen events. As batteries degrade, precise mission planning becomes challenging due to uncertainties in the end-of-discharge prediction. This often leads to adding safety margins, reducing the number or duration of potential flights on one battery charge. While predicting the end of discharge can support decision-making, it remains insufficient in case of unforeseen events, such as adverse weather conditions. This necessitates health-aware real-time control to address any unexpected events and extend the time until the end of charge while taking the current degradation state into account. This paper addresses the joint problem of mission planning and health-aware real-time control of operational parameters to prescriptively control the duration of one discharge cycle of the battery pack. We propose an algorithm that proactively prescribes operational parameters to extend the discharge cycle based on the battery’s current health status while optimizing the mission. The proposed deep reinforcement learning algorithm facilitates operational parameter optimization and path planning while accounting for the degradation state, even in the presence of uncertainties. Evaluation of simulated flights of a National Aeronautics and Space Administration (NASA) conceptual multirotor aircraft model, collected from Hardware-in-the-loop experiments, demonstrates the algorithm’s near-optimal performance across various operational scenarios, allowing adaptation to changed environmental conditions. The proposed health-aware prescriptive algorithm enables a more flexible and efficient operation not only in single aircraft but also in fleet operations, increasing the overall system throughput.
期刊介绍:
Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.