Assessment of cellular dose and damage induced by radon and its progeny using the BEAS-2B cell mesh model

IF 1.6 3区 工程技术 Q3 CHEMISTRY, INORGANIC & NUCLEAR Applied Radiation and Isotopes Pub Date : 2025-02-21 DOI:10.1016/j.apradiso.2025.111749
Han Gao , Yidi Wang , Jiahao Guo , Huiyuan Xue , Xinjie Wang , Kaijin Yan , Tao Wu , Xiaotong Gao , Haiyang Li , Liang Sun
{"title":"Assessment of cellular dose and damage induced by radon and its progeny using the BEAS-2B cell mesh model","authors":"Han Gao ,&nbsp;Yidi Wang ,&nbsp;Jiahao Guo ,&nbsp;Huiyuan Xue ,&nbsp;Xinjie Wang ,&nbsp;Kaijin Yan ,&nbsp;Tao Wu ,&nbsp;Xiaotong Gao ,&nbsp;Haiyang Li ,&nbsp;Liang Sun","doi":"10.1016/j.apradiso.2025.111749","DOIUrl":null,"url":null,"abstract":"<div><div>The decay of radon and its progeny mainly produces α particles and β particles. Due to their short range and high linear energy transfer (LET) of α particles, it is necessary to evaluate the dose deposition at the cellular and subcellular levels so as to better assess their health effects on the human body. Given that the lung is the primary target organ for radon exposure, we utilized human bronchial epithelial cells (BEAS-2B cells) to construct a realistic mesh model. Using Monte Carlo simulation software PHITS, we computed cellular S-values under conditions of radon and progeny irradiation, the deposited does inside cells of nuclide that distribute outside cells has been calculated. These calculations were contrasted with results obtained from traditional geometric models and MIRDcell calculations. To quantify the damage effects caused by radon and its progeny, this study used MCDS to calculate the DNA damage, for various nuclides, Rn-222 produces the highest number of double-strand breaks (DSBs) up to 21.8 Gy-1cell-1, while Tl-210 produces the least DSBs with 8.32 Gy-1cell-1. Additionally, other damage metrics such as single-strand breaks (SSBs), “OTHER”, and “ALL CLUSTERS” were quantified. This research, based on the BEAS-2B cell model, offers more precise information on cellular doses and damage effects of radon and its progeny. It holds significant implications for the future development of radiation protection strategies and applications in radon therapy.</div></div>","PeriodicalId":8096,"journal":{"name":"Applied Radiation and Isotopes","volume":"220 ","pages":"Article 111749"},"PeriodicalIF":1.6000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Radiation and Isotopes","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0969804325000946","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

The decay of radon and its progeny mainly produces α particles and β particles. Due to their short range and high linear energy transfer (LET) of α particles, it is necessary to evaluate the dose deposition at the cellular and subcellular levels so as to better assess their health effects on the human body. Given that the lung is the primary target organ for radon exposure, we utilized human bronchial epithelial cells (BEAS-2B cells) to construct a realistic mesh model. Using Monte Carlo simulation software PHITS, we computed cellular S-values under conditions of radon and progeny irradiation, the deposited does inside cells of nuclide that distribute outside cells has been calculated. These calculations were contrasted with results obtained from traditional geometric models and MIRDcell calculations. To quantify the damage effects caused by radon and its progeny, this study used MCDS to calculate the DNA damage, for various nuclides, Rn-222 produces the highest number of double-strand breaks (DSBs) up to 21.8 Gy-1cell-1, while Tl-210 produces the least DSBs with 8.32 Gy-1cell-1. Additionally, other damage metrics such as single-strand breaks (SSBs), “OTHER”, and “ALL CLUSTERS” were quantified. This research, based on the BEAS-2B cell model, offers more precise information on cellular doses and damage effects of radon and its progeny. It holds significant implications for the future development of radiation protection strategies and applications in radon therapy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Radiation and Isotopes
Applied Radiation and Isotopes 工程技术-核科学技术
CiteScore
3.00
自引率
12.50%
发文量
406
审稿时长
13.5 months
期刊介绍: Applied Radiation and Isotopes provides a high quality medium for the publication of substantial, original and scientific and technological papers on the development and peaceful application of nuclear, radiation and radionuclide techniques in chemistry, physics, biochemistry, biology, medicine, security, engineering and in the earth, planetary and environmental sciences, all including dosimetry. Nuclear techniques are defined in the broadest sense and both experimental and theoretical papers are welcome. They include the development and use of α- and β-particles, X-rays and γ-rays, neutrons and other nuclear particles and radiations from all sources, including radionuclides, synchrotron sources, cyclotrons and reactors and from the natural environment. The journal aims to publish papers with significance to an international audience, containing substantial novelty and scientific impact. The Editors reserve the rights to reject, with or without external review, papers that do not meet these criteria. Papers dealing with radiation processing, i.e., where radiation is used to bring about a biological, chemical or physical change in a material, should be directed to our sister journal Radiation Physics and Chemistry.
期刊最新文献
Editorial Board Resilient STR loci under gamma radiation: A preliminary study on DNA stability in buccal swabs Monte Carlo-based estimation of patient absorbed dose in 99mTc-DMSA, -MAG3, and -DTPA SPECT imaging using the University of Florida (UF) phantoms Investigation and analysis of the proton-induced reactions on natCu, 65Cu, and 63Cu to produce 62, 63, 65Zn radioisotopes for medical applications Analysis of cement raw materials radioactivity in Chongqing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1