Chalcopyrite geochemistry: Advancements and implications in ore deposit research

IF 3.2 2区 地球科学 Q1 GEOLOGY Ore Geology Reviews Pub Date : 2025-02-25 DOI:10.1016/j.oregeorev.2025.106528
Yao Tang , Deyou Sun , Jun Gou , Xinran Ni , Xiaohui Zeng , Xingmin Zhang , Weipeng Liu , Shanshan Liang , Changzhou Deng
{"title":"Chalcopyrite geochemistry: Advancements and implications in ore deposit research","authors":"Yao Tang ,&nbsp;Deyou Sun ,&nbsp;Jun Gou ,&nbsp;Xinran Ni ,&nbsp;Xiaohui Zeng ,&nbsp;Xingmin Zhang ,&nbsp;Weipeng Liu ,&nbsp;Shanshan Liang ,&nbsp;Changzhou Deng","doi":"10.1016/j.oregeorev.2025.106528","DOIUrl":null,"url":null,"abstract":"<div><div>Chalcopyrite is a prevalent sulfide mineral in ore deposits and hosts various trace elements such as Ag, Co, As, Se, Sb, Te, Bi, etc. The variations in trace element contents, as well as Fe, S, and Cu isotopic compositions of chalcopyrite are controlled by a series of factors including metallogenic temperature and pressure, fluid compositions, metal sources, and sulfide equilibrium. Therefore, chalcopyrite geochemistry offers valuable insights into the genesis of ore deposits. In this study, we reviewed and compiled the chalcopyrite geochemical data from porphyry Cu deposits (PCDs), sedimentary rock-hosted stratiform Cu deposits (SSCs), iron oxide Cu-Au deposits (IOCGs), sedimentary exhalative deposits (SEDEXs), magmatic Cu-Ni sulfide deposits (MSDs), and volcanogenic massive sulfide deposits (VMSs), etc. We aim to discuss and summarize the distribution and control mechanisms of trace elements and the compositional characteristics and controlling factors of S, Fe, and Cu isotopes in chalcopyrite, and the application of chalcopyrite geochemistry in ore deposit studies. Our study shows that different types of ore deposits show significantly distinct chalcopyrite geochemical characteristics. For example, in PCDs, chalcopyrite is notably enriched in Zn and Pb, with negative δ<sup>34</sup>S values (−2.1 ± 3.64 ‰, n = 32) due to sediment contributions. Positive δ<sup>65</sup>Cu values (1.5 ± 2.00 ‰, n = 140) indicate a mantle-crustal mixed source, while negative δ<sup>57</sup>Fe values (−4.3 ± 5.10 ‰, n = 32) likely result from Fe isotope fractionation during magnetite precipitation or continental crust contamination. In MSDs, Cr is the most enriched element, with positive δ<sup>34</sup>S values (1.0 ± 2.14 ‰, n = 185) and slightly negative δ⁶<sup>5</sup>Cu values (−0.46 ± 0.50 ‰, n = 52). Chalcopyrite in SSCs is enriched in Zn and As, characterized by negative δ<sup>34</sup>S (−3.6 ± 0.12 ‰, n = 190) and δ<sup>6</sup><sup>5</sup>Cu values (−0.59 ± 0.98 ‰, n = 118). These findings indicate that chalcopyrite can be used as an impactful tool for constraining metallogenic physical and chemical conditions, discriminating ore deposit types and tracing the evolution of ore-forming fluids and metal sources.</div></div>","PeriodicalId":19644,"journal":{"name":"Ore Geology Reviews","volume":"179 ","pages":"Article 106528"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ore Geology Reviews","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169136825000885","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Chalcopyrite is a prevalent sulfide mineral in ore deposits and hosts various trace elements such as Ag, Co, As, Se, Sb, Te, Bi, etc. The variations in trace element contents, as well as Fe, S, and Cu isotopic compositions of chalcopyrite are controlled by a series of factors including metallogenic temperature and pressure, fluid compositions, metal sources, and sulfide equilibrium. Therefore, chalcopyrite geochemistry offers valuable insights into the genesis of ore deposits. In this study, we reviewed and compiled the chalcopyrite geochemical data from porphyry Cu deposits (PCDs), sedimentary rock-hosted stratiform Cu deposits (SSCs), iron oxide Cu-Au deposits (IOCGs), sedimentary exhalative deposits (SEDEXs), magmatic Cu-Ni sulfide deposits (MSDs), and volcanogenic massive sulfide deposits (VMSs), etc. We aim to discuss and summarize the distribution and control mechanisms of trace elements and the compositional characteristics and controlling factors of S, Fe, and Cu isotopes in chalcopyrite, and the application of chalcopyrite geochemistry in ore deposit studies. Our study shows that different types of ore deposits show significantly distinct chalcopyrite geochemical characteristics. For example, in PCDs, chalcopyrite is notably enriched in Zn and Pb, with negative δ34S values (−2.1 ± 3.64 ‰, n = 32) due to sediment contributions. Positive δ65Cu values (1.5 ± 2.00 ‰, n = 140) indicate a mantle-crustal mixed source, while negative δ57Fe values (−4.3 ± 5.10 ‰, n = 32) likely result from Fe isotope fractionation during magnetite precipitation or continental crust contamination. In MSDs, Cr is the most enriched element, with positive δ34S values (1.0 ± 2.14 ‰, n = 185) and slightly negative δ⁶5Cu values (−0.46 ± 0.50 ‰, n = 52). Chalcopyrite in SSCs is enriched in Zn and As, characterized by negative δ34S (−3.6 ± 0.12 ‰, n = 190) and δ65Cu values (−0.59 ± 0.98 ‰, n = 118). These findings indicate that chalcopyrite can be used as an impactful tool for constraining metallogenic physical and chemical conditions, discriminating ore deposit types and tracing the evolution of ore-forming fluids and metal sources.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Ore Geology Reviews
Ore Geology Reviews 地学-地质学
CiteScore
6.50
自引率
27.30%
发文量
546
审稿时长
22.9 weeks
期刊介绍: Ore Geology Reviews aims to familiarize all earth scientists with recent advances in a number of interconnected disciplines related to the study of, and search for, ore deposits. The reviews range from brief to longer contributions, but the journal preferentially publishes manuscripts that fill the niche between the commonly shorter journal articles and the comprehensive book coverages, and thus has a special appeal to many authors and readers.
期刊最新文献
Gold mineralization of the Huangjindong gold deposit in the Jiangnan Orogen, South China: Constraints from fluid inclusions and LA-ICP-MS analysis of pyrite and arsenopyrite Geological setting, mineralogy, and isotopic characterization of the Jbel N’Zourk copper deposit, central Anti-Atlas, Morocco Editorial Board Ore fluid pathways at the giant Lannigou Carlin-type gold deposit, SW Guizhou, China Role of methane-rich fluids in mesothermal gold mineralization: Insights from the Chaihulanzi gold deposit, North China Craton
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1