Role of methane-rich fluids in mesothermal gold mineralization: Insights from the Chaihulanzi gold deposit, North China Craton

IF 3.2 2区 地球科学 Q1 GEOLOGY Ore Geology Reviews Pub Date : 2025-02-26 DOI:10.1016/j.oregeorev.2025.106536
Qing–fei Sun , Ke–yong Wang , Chen–guang Zhao , Nan Wang , Zhi-bo Liu , Ju-xing Tang , Bao–ping Gan , Qiu-ming Pei , Dong Xu
{"title":"Role of methane-rich fluids in mesothermal gold mineralization: Insights from the Chaihulanzi gold deposit, North China Craton","authors":"Qing–fei Sun ,&nbsp;Ke–yong Wang ,&nbsp;Chen–guang Zhao ,&nbsp;Nan Wang ,&nbsp;Zhi-bo Liu ,&nbsp;Ju-xing Tang ,&nbsp;Bao–ping Gan ,&nbsp;Qiu-ming Pei ,&nbsp;Dong Xu","doi":"10.1016/j.oregeorev.2025.106536","DOIUrl":null,"url":null,"abstract":"<div><div>Lode gold deposits in low-grade greenschist belt account for an estimated 40–45 % of the global gold endowment. Au-migrating fluids are commonly metamorphic, low-salinity, and aqueous-carbonic in nature, and flow along high-permeability fault zones where methane-rich fluids may appear under special physicochemical conditions. The Chaihulanzi deposit located in the northern margin of the North China Craton is a large lode Au deposit characterized by abundant methane-rich inclusions. In this study, we examined the nature and isotopic composition of ore-forming fluids to identify their origins, evolution, and roles in Au mineralization. Based on their nature and phase transition patterns, three types of fluid inclusion (FI) were identified: H<sub>2</sub>O–NaCl (type I), H<sub>2</sub>O–NaCl–CH<sub>4</sub>–CO<sub>2</sub> (type II), and CH<sub>4</sub>–CO<sub>2</sub> (type III). The primary type I FIs in stage I indicate that the initial hydrothermal fluids were a mesothermal low salinity NaCl–H<sub>2</sub>O–CO<sub>2</sub> system. Stage II fluids are characterized by coexisting assemblages of type I, IIa (carbon phase occupying 20–50 vol%), IIb (carbon phase occupying 50–80 vol%), IIIa (CO<sub>2</sub>–rich), and IIIb (CH<sub>4</sub>–rich) FIs, which display different homogenization modes at similar homogenization temperatures. The wide range of X<sub>CH4</sub> suggests the addition of a foreign methane-rich fluid, indicating that the ore-forming fluids evolved into a medium-to-low-temperature and low-salinity NaCl–H<sub>2</sub>O–CH<sub>4</sub>–CO<sub>2</sub> system. Abundant CH<sub>4</sub>–rich FIs in stage III indicate that the fluid was transformed into a medium-to-low temperature and low-salinity NaCl–H<sub>2</sub>O–CH<sub>4</sub> ± CO<sub>2</sub> system. The properties of stage IV FIs indicated a low-temperature and low-salinity NaCl–H<sub>2</sub>O system. The H–O–C isotope data of stage I suggest that the primary fluids were derived from a dominant magmatic origin. The increasingly depleted H–O–C isotope data indicate the progressive involvement of a foreign methane-rich fluid in stage II. The fluids in stage III show an increased degree of fluid mixing. In conclusion, our data confirmed that the primary ore-forming fluids were oxidizing mesothermal low-salinity NaCl–H<sub>2</sub>O–CO<sub>2</sub> systems. With the mixing process of wall-rock buffered fluids, the main metallogenic stage fluids evolved into a reductive medium-to-low temperature and low-salinity NaCl–H<sub>2</sub>O–CH<sub>4</sub>–CO<sub>2</sub> system. The precipitation of Au was attributed to the combined effects of phase separation, reducing methane agent, and sulfidation of iron-containing minerals.</div></div>","PeriodicalId":19644,"journal":{"name":"Ore Geology Reviews","volume":"179 ","pages":"Article 106536"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ore Geology Reviews","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169136825000964","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Lode gold deposits in low-grade greenschist belt account for an estimated 40–45 % of the global gold endowment. Au-migrating fluids are commonly metamorphic, low-salinity, and aqueous-carbonic in nature, and flow along high-permeability fault zones where methane-rich fluids may appear under special physicochemical conditions. The Chaihulanzi deposit located in the northern margin of the North China Craton is a large lode Au deposit characterized by abundant methane-rich inclusions. In this study, we examined the nature and isotopic composition of ore-forming fluids to identify their origins, evolution, and roles in Au mineralization. Based on their nature and phase transition patterns, three types of fluid inclusion (FI) were identified: H2O–NaCl (type I), H2O–NaCl–CH4–CO2 (type II), and CH4–CO2 (type III). The primary type I FIs in stage I indicate that the initial hydrothermal fluids were a mesothermal low salinity NaCl–H2O–CO2 system. Stage II fluids are characterized by coexisting assemblages of type I, IIa (carbon phase occupying 20–50 vol%), IIb (carbon phase occupying 50–80 vol%), IIIa (CO2–rich), and IIIb (CH4–rich) FIs, which display different homogenization modes at similar homogenization temperatures. The wide range of XCH4 suggests the addition of a foreign methane-rich fluid, indicating that the ore-forming fluids evolved into a medium-to-low-temperature and low-salinity NaCl–H2O–CH4–CO2 system. Abundant CH4–rich FIs in stage III indicate that the fluid was transformed into a medium-to-low temperature and low-salinity NaCl–H2O–CH4 ± CO2 system. The properties of stage IV FIs indicated a low-temperature and low-salinity NaCl–H2O system. The H–O–C isotope data of stage I suggest that the primary fluids were derived from a dominant magmatic origin. The increasingly depleted H–O–C isotope data indicate the progressive involvement of a foreign methane-rich fluid in stage II. The fluids in stage III show an increased degree of fluid mixing. In conclusion, our data confirmed that the primary ore-forming fluids were oxidizing mesothermal low-salinity NaCl–H2O–CO2 systems. With the mixing process of wall-rock buffered fluids, the main metallogenic stage fluids evolved into a reductive medium-to-low temperature and low-salinity NaCl–H2O–CH4–CO2 system. The precipitation of Au was attributed to the combined effects of phase separation, reducing methane agent, and sulfidation of iron-containing minerals.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Ore Geology Reviews
Ore Geology Reviews 地学-地质学
CiteScore
6.50
自引率
27.30%
发文量
546
审稿时长
22.9 weeks
期刊介绍: Ore Geology Reviews aims to familiarize all earth scientists with recent advances in a number of interconnected disciplines related to the study of, and search for, ore deposits. The reviews range from brief to longer contributions, but the journal preferentially publishes manuscripts that fill the niche between the commonly shorter journal articles and the comprehensive book coverages, and thus has a special appeal to many authors and readers.
期刊最新文献
Gold mineralization of the Huangjindong gold deposit in the Jiangnan Orogen, South China: Constraints from fluid inclusions and LA-ICP-MS analysis of pyrite and arsenopyrite Geological setting, mineralogy, and isotopic characterization of the Jbel N’Zourk copper deposit, central Anti-Atlas, Morocco Editorial Board Ore fluid pathways at the giant Lannigou Carlin-type gold deposit, SW Guizhou, China Role of methane-rich fluids in mesothermal gold mineralization: Insights from the Chaihulanzi gold deposit, North China Craton
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1