A. Gharib , W. Djema , P. Moñino Fernández , R. Chin-On , M. Janssen , O. Bernard
{"title":"Validation of an adaptive temperature model for closed microalgae cultivation systems","authors":"A. Gharib , W. Djema , P. Moñino Fernández , R. Chin-On , M. Janssen , O. Bernard","doi":"10.1016/j.algal.2024.103838","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate temperature prediction plays a crucial role in optimizing microalgae growth conditions. For that, we recently developed a generic adaptive temperature prediction model, called the <em>Simplified Auto Tuning Heat Exchange (SATHE)</em> model, which was initially tailored to open raceway ponds. In this study, we adapt and validate the SATHE model specifically for the case of closed reactors. We assess two distinct closed reactor types across different geographical locations: a tubular photobioreactor situated in a greenhouse in Wageningen (Netherlands) and a flat panel reactor on Bonaire, a Caribbean island in the Lesser Antilles. Finally, we discuss the practical applications of our model. We test the reactors' performance in different geographical settings and assess energy consumption under varied meteorological conditions. This paper highlights the versatile model's potential for optimizing closed-reactor operation and thermal management in various geographical locations.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":"86 ","pages":"Article 103838"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algal Research-Biomass Biofuels and Bioproducts","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211926424004508","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate temperature prediction plays a crucial role in optimizing microalgae growth conditions. For that, we recently developed a generic adaptive temperature prediction model, called the Simplified Auto Tuning Heat Exchange (SATHE) model, which was initially tailored to open raceway ponds. In this study, we adapt and validate the SATHE model specifically for the case of closed reactors. We assess two distinct closed reactor types across different geographical locations: a tubular photobioreactor situated in a greenhouse in Wageningen (Netherlands) and a flat panel reactor on Bonaire, a Caribbean island in the Lesser Antilles. Finally, we discuss the practical applications of our model. We test the reactors' performance in different geographical settings and assess energy consumption under varied meteorological conditions. This paper highlights the versatile model's potential for optimizing closed-reactor operation and thermal management in various geographical locations.
期刊介绍:
Algal Research is an international phycology journal covering all areas of emerging technologies in algae biology, biomass production, cultivation, harvesting, extraction, bioproducts, biorefinery, engineering, and econometrics. Algae is defined to include cyanobacteria, microalgae, and protists and symbionts of interest in biotechnology. The journal publishes original research and reviews for the following scope: algal biology, including but not exclusive to: phylogeny, biodiversity, molecular traits, metabolic regulation, and genetic engineering, algal cultivation, e.g. phototrophic systems, heterotrophic systems, and mixotrophic systems, algal harvesting and extraction systems, biotechnology to convert algal biomass and components into biofuels and bioproducts, e.g., nutraceuticals, pharmaceuticals, animal feed, plastics, etc. algal products and their economic assessment